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ABSTRACT

We present modifications of standard sequential decoding algorithms in

an attempt to operate at rates greater than R0, the computational cutoff rate.

We call the new algorithms sequential decoding with reordering (SDR) algo-

rithms. They observe the received message at the channel output and use this

information to reorder the digits in the codeword tree. The resulting tree is

then searched by a sequential decoder; the goal of reordering is to obtain a

tree that is easy to search. However, codeword trees associated with convolu-

tional codes cannot be reordered and still retain their uniform structure and

slow growth. For this reason, we use low-density codes, a class of block

codes.

The SDR algorithms are presented for the binary erasure and binary sym-

metric channels. Simulation results suggest that at high code rates, the algo-

rithms can be used at rates nearly equal to or greater than R0.

Because of differences between codeword trees for low-density codes and

convolutional codes, we present a new sequential decoding algorithm designed

for low-density codes. We also present an SDR algorithm that can be used as

a soft decision decoder on channels with side information and channels with

real-valued outputs.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

We present modifications of standard sequential decoding algorithms in

an attempt to operate at rates greater than the computational cutoff rate.

Sequential decoding is a general method for decoding tree codes, including

the important class of convolutional codes. It was invented by Wozencraft in

1957 and subsequently modified by Fano [4] and others. For a good introduc-

tion to this topic, see Section 7.2 of Clark and Cain [3].

The amount of computation performed by a sequential decoder depends

on the channel noise. In particular, a long burst of noise will require a great

deal of computation. This is illustrated in the following example, taken from

[8]. Suppose we have a binary erasure channel with transition probabilities as

shown in Figure 1.1. Suppose further that we use a convolutional code with

rate R. If the first L received symbols are erasures, each path with length L

symbols in the codeword tree will appear equally likely to the decoder until

the paths are extended further into the tree. There are approximately 2 LR

such paths, and each path has probability 1/2 of being extended before the

decoder finds the correct one. Thus, given L initial erasures, the expected

number of paths searched by the decoder is 2LR12.

A long burst of noise will cause a sequential decoder to perform a great

deal of computation even on more general communication channels. For
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Figure 1.1. The binary erasure channel.
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example, consideration of bursts allowed Jacobs and Berlekamp [8] to prove

the following result. Consider a discrete memoryless channel with input

alphabet {O,1,...,K-1}, output alphabet {O,1,...,J-1}, and transitiol- ,roba-

bilities P(j 1k). If one uses a code with rate R satisfying R >Rp, then

lim E(c,) = o, (
n ---+0

where

to(p)
R-

p
p

I 0(P) = the concave hull of Eo(p)

E o(P) = Gallager's reliability exponent

max amlog [ Q(k)P(j Ik)(1+P)
Q I j-0 k-0I1+

cn  the amount of computation per symbol

required to decode the first n symbols

This result is valid for all p>O, for all tree codes, which include the class of

convolutional codes, and for all sequential decoders. It is derived by consid-

ering the effect of noise bursts with specified length and severity. These noise

bursts are shown to occur sufficiently often and cause the decoder to search

enough of the codeword tree to result in the unbounded moments of compu-

tation described above. Note that Arikan [1] has obtained an improved

bound for the case p=l. His result shows that Eb-n) = oc for all R >E0(1),
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which differs from the result given above by using Eo(p) instead of its concave

hull.

For future reference, note that E 0 (1), which is a function of the channel,

is traditionally denoted by R0 . (This presentation follows [1].) The computa-

tional cutoff rate for sequential decoding, Rcomp , is defined to be the

supremum of code rates for which lim E(cn)< oo. From Arikan's result and
n --*oOO

previous work (p. 279 of Gallager [5]), it is known that Rcomp= R o. We use

R 0 as a reference point to gauge the performance of the decoding algorithms

presented in this work.

The preceding discussion leads one to consider what would happen if

bursts of noise could somehow be eliminated. Would it be possible to have

bounded moments of computation even at rates above R.? One way to limit

the occurrence and duration of bursts is to adaptively reorder the codeword

tree, that is, to change the order of the digits used to generate the tree. How-

ever, one cannot significantly reorder the codeword tree associated with a

convolutional code and still obtain a tree that is practical to search.

Instead of using convolutional codes, one can use low-density codes.

Low-density codes, devised by Gallager [6], [7], are linear block codes charac-

terized by three parameters. A binary (n,j,k) low-density code has block-

length n, and a parity matrix with exactly j l's in each column and k l's in

each row. All low-density codes considered in this paper are binary.
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Typically, j and k are much smaller than n, resulting in a sparse parity

matrix. In addition, choosing small values for j and k causes low-density

codes to have the following two features. First, given any ordering of the par-

ity checks used to define a low-density code, one can generate a codeword

tree that grows slowly compared to the growth for a dense parity matrix.

Second, different parity check orderings yield different codeword trees.

These two features are used by the decoding algorithms presented in this

thesis. The algorithms, which we call sequential decoding with reordering

(SDR) algorithms, all have the structure shown in Figure 1.2. The ordering

algorithm observes the channel output and uses this information to choose a

parity check ordering. The sequential decoder then searches the correspond-

ing codeword tree to obtain the decoder output.

A method for generating codeword trees for low-density codes with given

parity check orderings is presented in Section 1.2. Some differences between

these trees and codeword trees for convolutional codes are discussed. Sec-

tion 1.3 summarizes some of the properties of low-density codes. This

includes a result concerning their asymptotic minimum distance, obtained by

Gallager [7]. Section 1.4 describes some known decoding algorithms for low-

density codes.

Chapter 2 discusses an SDR algorithm for binary erasure channels. It

includes the results of using this algorithm on a simulated communication

channel.
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Chapter 3 contains SDR algorithms for binary symmetric channels.

Several ordering algorithms are presented. Because of the differences

between codeword trees for low-density codes and convolutional codes, a new

sequential decoding algorithm is presented as well. Simulation results are

presented also.

Chapter 4 contains conclusions and possible directions for further

research. A decoding algorithm for memoryless channels with binary input

and arbitrary output is presented. In particular, it is applicable to additive

white Gaussian noise channels and Rayleigh fading channels. This algorithm

allows one to use soft decision decoding.

Throughout this work we use the following terminology. The vector

x = (xi)i is the transmitted codeword, y = (yi)in1 is the channel output, or

received message, and x = (.i)in 1 is the decoder output, where n is the block-

length of the code being used.

1.2 Codeword Trees for Low-Density Codes

In this section, we present a method for generating codeword trees for

low-density codes and discuss some properties of these trees.

The following description applies to a low-density code with parameters

n, j, and k. To generate a codeword tree, one must first assign an ordering

to the parity checks used to define the code. Any ordering will yield a code-

word tree, and at this point we assume the ordering is arbitrary. Algorithms
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for choosing an ordering are given in Chapters 2 and 3. Each parity check 3
corresponds to a level in the codeword tree. Since there are nj/k parity

checks, there will be nj/k levels in the tree. As with any tree code, the I
nodes of the tree correspond to partially filled codewords. The root node is 3
completely unfilled and the nodes at the final level correspond to complete

codewords.

The first level of the tree is generated by assigning values to the digits I
involved in the first parity check. A different node is created for each assign- -
ment that satisfies the parity check. (See Figure 1.3.) Since there are k digits

involved in each parity check, there will be 2
k - 1 nodes in the first level. Each I

of these nodes is extended to the second level by assigning values to the digits 3
involved in the second parity check. Again, this is done in all ways that

satisfy the new parity check. However, if some digits are involved in both the

first and second parity checks, the values that they were assigned in the first I
level are used without change in the second level. In general, a digit is 3
assigned a value only at one level in the tree and has the same value in all sub-

sequent levels. I

This procedure is continued until all the parity checks have been used to U
generate levels in the tree. A special case arises if all the digits involved in a 3
parity check have already been assigned values in previous levels. Then the

new level is generated by extending only the nodes that satisfy the new parity U
I
I:
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-0-00-00...

" - 0- 00-11 ...

/ -0-11 -00...

_... ---. I1-011 ...

_ ~1-_0 1 ... -1-... .,. 0 1 _10 0 ...

-1 10-01 ...

-1-10 ... -1-10-10 ...

First two parity equations:

X2 + X4 + X5  0

X2 + X7 + X8  0

Figure 1.3. The root node and first two levels of a codeword tree for a low-
density code.
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check. When the procedure is completed, the final level contains a list of all

the codewords in the code.

This procedure can be used with any linear block code. In the general

case, however, ther. is no limit on the number of digits involved in a parity

check, other than the blocklength n. A typical parity check may involve n/2

digits. If this is the first parity check used to generate the codeword tree,

there will be 2n/2 -1 nodes in the first level. Even for moderate n, this is too

large to be searched by a practical decoder. However, in an (n, j,k) low-

density code, each parity check used to define the code involves exactly k

digits. The parameter k is typically small, and may be chosen independently

of n. All of the low-density codes used in this study have k less than or equal

to 8. (Note that this k is not the same as the number of information symbols

associated with each codeword, which is also commonly denoted by k.) As

will be shown below, codeword trees for low-density codes have fanout lim-

ited by 2 k- , and typically the fanout is much less.

One property of the codeword trees obtained using the method given

above is the variability of their fanout, or growth rate. This contrasts with

codeword trees for convolutional codes, which grow at the same rate at every

level. To characterize the growth rate, we first present some definitions. The

set of digits involved in a parity check is referred to as a parity check set.

Given an ordering of the parity checks, each parity check set is partitioned

into two groups, the n-set and the o-set. The n-set, which stands for new set,
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is made up of the digits not contained in any previous parity check set, and

the o-set, or old set, contains the remaining digits. Recall that each level in

the codeword tree is associated with a unique parity check. The set of digits

that are assigned values at a given level in the tree are the digits in the

corresponding n-set.

Given a codeword tree for an (n, j, k) low-density code, let ni be the

number of digits in the n-set associated with level i in the tree. Also, let Ni

be the total number of nodes at level i, with N o = 1. Then, for 1 < i < n j/k,

(i) If the i th parity check is independent of the preceding parity checks,

Ni = 2 Ni_. (1.2)

(ii) Otherwise,

Ni = Ni_ 1. (1.3)

In particular, a-

N i < 2 k-Ni_l. (1.4)

To see why this is true, suppose ni > 1. Then there are 2n' ways to assign

values to the ni digits filled in at level i, and half these assignments will satisfy

the corresponding parity check. Since in this case parity check i must be

independent of the preceding ones, case (i) applies and (1.2) is valid. On the

other hand, suppose ni = 0 and parity check i is independent of the preceding

ones. Then, in going from level i-1 to level i, the dimension of the set of

codeword fragments represented in the tree will decrease by one. Thus
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V. = N/_1/2 and (1.2) is again valid. If parity check i is not independent of

the preceding ones, then ni must be zero, thus Ni cannot be greater than

Ni_ 1. Furthermore, every codeword fragment satisfying the first i-1 parity

checks will necessarily satisfy parity check i, thus Ni = Ni_ 1. This establishes

(1.3). Since every parity check set contains k digits, ni  k for all i. This

yields (1.4) and concludes the proof.

This result implies that codeword trees for low-density codes tend to

grow quickly near the beginning of the tree and more slowly toward the end.

This occurs because the growth rate at a given level depends on the size of

the corresponding n-set. At a level close to the origin, few digits will have

had a chance to appear in previous parity check sets, hence the corresponding

n-set tends to be large. The opposite situation holds near the end of the tree.

As a result, ni will roughly be a decreasing function of i. This is not a hard

and fast rule, but a good qualitative description that holds regardless of which

parity check ordering is used.

In addition to the variable growth rate, codeword trees for low-density

codes and those for convolutional codes differ in another important way.

With a low-density code, two different subtrees descending from a common

parent node can be identical for many levels. This happens because the set of

digit values assigned to a node's children depends only on the parity of the

child level's o-set. As a result, two subtrees with a common parent node will

agree on the values they assign to codeword digits until a level is reached
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J where the o-set in one tree has different parity than the o-set in the other

tree. To determine where such a level can occur, consider the root nodes of

the two subtrees. The labels of these two nodes will differ only in the values

assigned to the digits in the n-set of the level containing the root nodes.

Denote this n-set by S. Then the first level at which the two trees can differ

must have an o-set that contains one or more digits in S.

This property can significantly affect the behavior of a sequential

decoder. If the decoder diverges from the correct path in the tree, it may not

be able to detect its error for many levels. In this case, backtracking one

level at a time would be very inefficient. For example, when using a (396,5,6)

low-density code and a typical parity check ordering, ten percent of the digits

will have 50 or more levels between their appearance in an n-set and their first

appearance in an o-set. For this reason, a new sequential decoding algorithm

is presented in Section 3.3.

1.3 Properties of Low-Density Codes

This section contains a summary of some properties of low-density

codes. They are included here for general interest and because most will be

referred to elsewhere in this work. The following results were obtained by

Gallager [6], [71 unless stated otherwise.

Recall that a binary (n, j,k) low-density code is a linear block code with

blocklength n and a parity matrix with exactly j l's in each column and k l's
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in each row. Note that this k differs from the quantity usually denoted by k

in the context of coding - namely, the number of information symbols associ-

ated with each codeword. This definition does not define the codes uniquely;

there may be many low-density codes for a given value of (n, j, k). Figure 1.4

contains the parity matrix for a (12,3,4) low-density code.

Low-density codes do not exist for all values of n, j, and k. Specifically,

the product nj must be a multiple of k. To see why, let L be the number of

rows in a low-density code's parity matrix. Counting by rows, there are a

total of Lk l's in the matrix; counting by columns yields a total of nj. Since

these expressions must be equal, we have

Lk = nf , (1.5)

and thus nj is a multiple of k.

Furthermore, all the codes considered in this work have n a multiple of

k. This restriction is followed by Gallager as well. The blocklength is con-

strained in this way because it is then quite easy to construct a low-density

code for a given set of parameter values. The method of construction is

described later in this section. This is not a severe restriction because k is

typically small - k is less than 10 for all the codes used in this work.

Equation (1.5) implies that L, the number of rows in the parity matrix,

equals nj/k. For this reason, j is always chosen to be less than k. Other-

wise L would be greater than n, which is undesirable, because if n of the
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n=12, j=3, k=4

0101 0010 0001
1000 0100 1010
0010 1001 0100

1000 1110 0000
0101 0000 1100
0010 0001 0011

0001 0101 0100
0100 1000 1001
1010 0010 0010

Figure 1.4. The parity matrix of a (12,3,4) low-density code.
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parity checks were linearly independent, the code rate would be zero. 5
Since the rank of the parity matrix equals n(1- R), where R is the code

rate in bits, and since the rank of any matrix cannot be greater than the

number of rows, we have 3
n(1- R) < (1.6)

k

Equivalently, 3
R > 1 -  . (1.7) 1

k

This relationship is satisfied with equality if and only if all the rows of the par-

ity matrix are linearly independent, and this does not hold for the low-density 3
codes used in this study. However, the parity check3 used to define these

codes are chosen randomly, and thus one would expcct the number of linearly

independent parity checks to be close to the total number. For this reac in, 3
the quantity 1 - j/k is referred to as the designed code rate. In any case, 3
(1.7) remains a valid lower bound.

Gallager studied the minimum distance properties of a random ensemble

of these codes. He obtained an upper bound to the minimum distance distri- 3
bution function P(dmi. < 6n). Note that Gallager's ensemble does not con- -
tain all possible low-density codes, but only those obtainable by the construc-

tion process described below. For fixed n, j, and k, where n is a multiple of

k, the ensemble is defined in the following way. Start with A, the (n/k) X n 3
I
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matrix shown in Figure 1 .5. Row i of A contains l's in positions (i-1)k

through ik and O's elsewhere. To choose a coce from the ensemble, create j

new matrices by permuting the columns of A j times. These matrices are

created independently, with each possible permutation having equal probabil-

ity. They are placed together to form a single (nj/k) X n matrix, the parity

matrix of the chosen code. Figure 1.4 contains an example of the parity

matrix of a code chosen from the ensemble of (12,3,4) low-density codes.

Each submatrix contains exactly k l's in each row and a single 1 in each

column, so the procedure yields a valid (n, j,k) low-density code. Gallager's

ensemble differs slightly from the one just described in that the first subma-

trix is always chosen to be an unpermuted copy of A. However, both ensem-

bles have the same minimum distance distribution function.

Gallager's upper bound to P(dmin < 6n) is fairly complicated and will not

be presented (see Theorem 2.4 of [7]). Of interest here is its behavior as n

increases, with j and k fixed. When j> 3, the bound converges to a unit

step at blk, where 6jk is the only strictly positive zero of the function B(\).

This function is given by

B(X) = (j-l)h(X) - - [i(s)+ (k-1)ln2I +jsX , (1.8)
k

where

h(,) -XlnX - (1-X)ln(1-X), (1.9)
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I

n=12, k4I_ _ II
1111 0000 0000
0000 1111 0000

0000 0000 1111 I
I
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p(s) = In 2-k , (1+ es)k+ (1- es)k (1.10)

and s satisfies

p'(s) = Xk . (1.11)

This means that for large n, almost all codes in the ensemble have minimum

distance dmin close to or greater than bjkn. This linear increase with n of the

typical minimum distance is a good property to have and it is uncommon

among other classes of codes. In fact, the Justesen codes are the only known

dmin
class of codes with an explicitly defined construction for which the ratio

n

is bounded away from zero, when the rate R is fixed and n goes to infinity

(see Section 7.9 of Blahut [2]).

For the case j = 2, Gallager showed that

n
2 Idm 2 n2(1.12)

dmin < 2 +In -l

In (k -1)

dmin
Thus, when j = 2 and k is fixed, -- 0 as n goes to infinity. For this

n

reason, low-density codes with j = 2 are not considered in this work. When

j= 1, d min= 2, thus codes with this value of j are not considered either.

Another significant property of Gallager's upper bound to P(dmin < 6n)

is that for large n it tends to have a small step at 6 = 2/n. The amplitude of

this step is O(n-0 -2)). This fact led Gallager to construct an expurgated
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ensemble of low-density codes by throwing out the half with the smallest

minimum distance. Otherwise, the codes with dmin= 2 dominated his bound

on the ensemble average of the decoding error probability when a maximum

likelihood decoder was used. In order to avoid codes with dmin = 2, all the

codes used in this study were constrained to have the following property:

No two parity check sets contain more than one digit in common.

The codes used by Gallager in his simulations were chosen to satisfy this pro-

perty as well. The term "parity check set" denotes the set of digits involved

in a parity check. Note that the parity check sets referred to in the property

are those contained in the parity matrix used to define the code - the pro-

perty does not apply to derived parity checks formed by taking linear combi-

nations of rows of the parity matrix.

This property also ensures the validity of the first step of Gallager's i

decoding algorithm for low-density codes, described in Section 1.4 of this 3
thesis. The results of the first step are used to generate the reliability infor-

mation utilized by the decoding algorithms presented in Chapter 3. An algo-

rithm that generates the low-density codes used in this thesis is described in I

Section A.1.

I
I
I
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1.4 Other Decoding Algorithms for Low-Density Codes

This section contains a summary of some known decoding algorithms for

low-density codes. The first algorithm is due to Gallager [6], [7]. The first

I step of this algorithm is incorporated into some of the decoding algorithms

presented in Chapter 3. Two algorithms due to Zyablov and Pinsker t9], [10]

are included also. One is for the binary erasure chanuel, and the other is for

the binary symmetric channel.

I Gallager presented two related decoding algorithms for low-density codes

([6], or pp. 41-45 of [7]). One algorithm can be used only on a binary sym-

metric channel, that is, a channel with both binary input and binary output.

I The second algorithm can be used on any binary-input memoryless channel;

3 in particular, it can be used on a channel with real-valued outputs, such as the

additive white Gaussian noise channel. The first algorithm is simpler but less

powerful than the second algorithm, and only the second algorithm will be

I described here.

Recall the following terminology. The vector x = (xi)', is the transmit-

ted codeword and y = (Yi)inl is the channel output, where n is the block-

length. In the following discussion, the channel is assumed to be memoryless

I and able to accept binary inputs, but is otherwise unconstrained. The code

3 being used is a low-density code with parameters (n, j, k). The notation that

follows differs from Gallager's.I
I
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Gallager's algorithm is iterative. Because it is difficult to describe, a sim-

plified version is presented first. The first iteration starts with the n dimen-

sional vector z° , whose components are defined by I

ZP = P(xi- =l y i ), I <i <n. (1.13)

Note that yi is the raw channel output, and is not necessarily binary valued.

Subsequent values of z are computed using the following formula.

k-i1+rlI(1-2z (p) ) 1
l-z/ (t+1) 1-zi i(P) "i  M -

- =- n ,1 1< i < n, p l, 1.14
ZI P+1 zi (P)k-1 )

l-1+ 1- (1- 2z,,1

m-1 I
where z,) is the component of z ) corresponding to the m-th digit other than

xi in the l-th parity check containing xi. The algorithm continues until each I

component of z(p) tends toward either 0 or 1. The decoder output is then 3
(.,i)in1 , where :i is the value toward which zip) is converging.i- I I

To interpret this procedure, consider the parity check tree shown in Fig-

ure 1.6. The root node represents xi and is said to be in the first level. The

nodes in the second level of the tree represent all the digits that are "linked"

with xi, where two digits are linked if they occur in a common parity check.

Thus, the j edges leaving the root node represent the j parity checks contain- I
ing xi, and each edge leads to k-1 nodes. Similarly, nodes in the third level 3
represent digits that are linked with digits in the second level. However, only

I
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j-1 edges emanate from a node at level two. This happens because for a

digit at level two, the parity check containing both it and the root node

already has its digits listed in the tree. The parity check tree is extended in U
this fashion, and continues indefinitely. From the second level on, each node

has j-1 sets of k-1 children. However, note that any given digit will appear

more than once in the tree, and when the root node appears again, the tree

essentially repeats itself. 3
Then (1.14) may be interpreted as follows. By definition, zf0 ) is the pro-

bability that x, equals 1, given the channel output yi" In addition, Gallager

showed

z. ) -- P(xi= 1 {yt, IE Si}), (1.15)

where Si is the set of indices of the digits in the first two levels of the parity I
check tree rooted at xi . Thus, from the viewpoint of digit i, zi(0) equals the

probability that xi equals one, conditioned on the channel output at the first
level of the parity check tree, and z 1) equals the probability of the same

event, conditioned on the channel output at the first two levels of the parity

check tree. This may be generalized; the algorithm is designed so that each

iteration expands the conditioning set to include one more level of the parity

check tree. I
However, the algorithm as described above will not achieve this goal. 3

Specifically, the interpretation breaks down for z( 2) and subsequent iterations.

I
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This occurs because a necessary independence assumption about the digits in

the conditioning set breaks down. As a concrete example, suppose that for a

given low-density code, the parity check tree rooted at digit 15 has digit 20 in

the second level. Then, not only will the value of z(1) depend on z(0), but
will depend on z() Therefore, the value of Z (2) which depends on z (1)

zi20z 2

will in turn depend on z15

To avoid this problem, Gallager's decoding algorithm differs from the

above description in the following way. Each digit i is associated with j pro-

bability values, denoted by zf")(1) through z/)(j), instead of the single value

z.). Initially, these quantities are the same;

z( 0() (= Z 0) = P(x=1Y), 1 <t < j. (1.16)

However, the updates differ. Each z/")(t) ignores one of the j parity checks

involving digit i. In other words,

k-1

1+ J (1- 2z(P)(t,))
I-Z(~)t 1-Z ) t  M-1

-- 1)H k-1 n p
l< 1- 17 (1- 2z, 0(tx)) (1.17)

m-1

This differs from (1.14) in that the t-th term is omitted in the outermost pro-

duct. Also, t. is chosen so that the update for z. )(t() is the one that ignores

the parity check containing digit i. The algorithm stops when, for all digits

1 <i < n, all j of the quantities zf")(1) through z/")(j) converge to zero or
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one. If these quantities do not converge, a decoding failure is declared.

Even with this modification, the independence assumption will be

violated at a level in the parity check tree where a digit appears for a second

time. As mentioned previously, this must happen eventually. However, Gal-

lager reasons that the dependencies have a minor effect and tend to cancel

each other out. Furthermore, after several iterations, the value of z(t ) may be

interpreted as the initial value z(° ) corresponding to a received sequence that

is easier to decode than the original one. Therefore, the iterations are contin-

ued even after dependencies occur.

For this algorithm, Gallager showed that the average number of iterations

required to decode is O(log log n). He also obtained loose bounds on the

probability of decoding error when using a binary symmetric channel. When

j=3, the probability of decoding error is bounded by some small negative

power of n, and when j >3, it is bounded by an exponential of a root of n.

These bounds are known to be valid only when the crossover probability is

sufficiently small; how small it must be depends on j and k. Gallager

hypothesized that the probability of decoding error actually decreases

exponentially in n.

Apart from its general interest as a decoding algorithm for low-density

codes, Gallager's algorithm is described here because of its use in some of the

decoding algorithms presented in this thesis. The first iteration of Gallager's

algorithm is used to generate a digit reliability measure for some of the binary
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symmetric channel decoding algorithms presented in Chapter 3. Only a single

value is generated for each digit, hence the simplified update Equation (1.14)

is used. All the low-density codes used in this study were chosen so that no

two parity check sets contain more than one digit in common, thus the

independence assumption required to validate the first iteration is satisfied.

Zyablov and Pinsker have also studied low-density codes. They obtained

results for the binary erasure channel (BEC) [9] and the binary symmetric

channel (BSC) [10]. Both results concern ensembles of codes. For the BEC

case, their ensemble contains codes that do not strictly satisfy the definition

of low-density codes given in Section 1.1. These codes have a parity matrix

with a fixed number of l's in each column, as before, but the number of l's in

each row is not fixed.

Zyablov and Pinsker define two quantities, ob and w0 , that depend on the

number of l's in each column and the number of rows in the parity matrix.

They show that for any a < q0 and w < w0 , with probability P approaching

one as n approaches infinity, with other code parameters fixed, the following

event occurs. A code from their ensemble has minimum distance d > Wn

and has a decoder with complexity O(n log n) that can correctly decode all

erasures with multiplicity < cn. This decoder complexity is very low for a

block code.

A decoder that achieves this result works by identifying the parity checks

that involve exactly one erased digit. Each of these erased digits has only one
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value that will satisfy the associated parity check, thus the decoder is able to

fill them in correctly. The process repeats until all erased digits are filled. I
Zyablov and Pinsker derive an analogous result for the BSC. In this

case, their code ensemble is equivalent to Gallager's. They define a quantity I
%.5 that depends on the number of l's in each column and each row of a 3
code's parity matrix. For any a < c.5, with probability P approaching one as

n approaches infinity, with other code parameters fixed, a code from their

ensemble has a decoder with complexity O(n log n) that can decode all errors 3
with multiplicity < an.

The decoder they use to achieve this bound starts with a fixed partition

of the digits into q = j(k-1)+1 subsets. The subsets are chosen so that no I
two digits in a single subset are linked, in the sense defined earlier of occur- 3
ring together in a common parity check. Since a digit can be linked with at

most j(k-1) other digits, such a partition is possible. The decoder considers

the q subsets in succession. For each subset, it changes all the digits for

which less than half the j parity checks in which they occur are satisfied.

The process repeats until at least half the parity checks involving each digit

are satisfied. If the resuit is not a valid codeword, a decoding failure is I
declared; otherwise, the resulting codeword is the decoder output. 1

I
I
I
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CHAPTER 2

AN SDR ALGORITHM FOR THE BINARY ERASURE CHANNEL

2.1 The MNE Ordering Algorithm

The binary erasure channel (BEC) is a discrete, memoryless channel with

transition probabilities as shown in Figure 1.1. The input symbol is erased

with probability c, and this probability is independent of the input. If not

erased, the input symbol is unchanged.

Recall that an SDR algorithm is composed of two parts - an ordering

algorithm, that orders the parity checks, and a sequential decoder. The BEC

3 is well-suited for an ordering algorithm, because the decoder knows exactly

where noise occurs in the message. In addition, the corrupted digits are

equally unreliable, so an ordering algorithm does not have to compare the

effects of different levels of noise. Most important, there exists a tight upper

bound to the number of nodes in the codeword tree visited by the sequential

decoder, for a given parity check ordering and erasure pattern. Here, the

sequential decoder "visits" a node if at some time that node is hypothesized

to be on the path corresponding to the transmitted codeword.

This upper bound is found by counting the nodes in the codeword tree

that agree with the unerased portion of the received message. (See Figure

2.1.) Let Ni be the number of such nodes at level i in the codeword tree for

an (n, j, k) low-density code. Then

1
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Figure 2.1. An example illustrating the upper bound to the number of nodes
visited by the sequential decoder. Nodes that agree with the received message
y have underlined labels and darkened edges. This is the same codeword tree .
fragment shown in Figure 1.3.

I
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No--1 (2.1)

Ni= 2a'N. 1  1 < i < M

where

ai =e i +6 i -1 (2.2)

M = nj/k

=the number of levels in the codeword tree

ei  the number of "new" erasures at level i

= the number of erasures in the n-set at level i.

The terms n-set and o-set are defined in Section 1.2. The quantity 6i is

defined as follows. We assign 6 = 1 if ej= 0 and in addition, either: 1) there

are no erasures in the o-set at level i, or 2) the parity of the erasures in the o-

set at level i, taken as a group, assumes only one value among the surviving

nodes at level i. Otherwise, we assign 6i = 0. In particular, .= 0 if e >_ 1,

and 3. = 1 if the parity check at level i is redundant, given the preceding parity

checks.

An upper bound to the number of nodes visited by the sequential

decoder is given bN

M M i

N(y,P)-= E Ni = E I- 2" (2.3)
i-O i-O 1-1

where y is the received message and P is the parity check ordering.
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Proof of (2.3): Clearly, if Ni is given by (2.1), then N is an upper bound

to the number of nodes visited by the sequential decoder. To see why (2. 1) is

2e1 -1

valid, first suppose ei > 1. Then there are 2 ways to fill the ei erasures and

satisfy Ci , the parity check at level i, so Ni = 2 e-l.

If ei = 0 and there are no erasures in the o-set at level i, then none of the

digits involved in Ci were erased. This means there is exactly one way to

extend each of the surviving nodes at level i-l, so N i = Ni_,1 .

Now suppose ei = 0 and condition 2) for 6i3. 1 holds. Then, for each sur-

viving node at level i-1, the parity of the erased digits in the o-set at level i

must match the parity obtained when these erasures are filled in correctly.

This implies N. = N 1_r

Finally, if ei = 0 and 6i = 0, then the parity of the erased digits in the o-set

at level i will be both even and odd among different surviving nodes at level

i-1. By symmetry, the parity for half these nodes will match the parity

obtained when the erasures are filled in correctly. Thus, only half the nodes

will be extended to level i, so Ni = N_1 / 2. This establishes (2.1), and there-

fore (2.3). "]

This bound is tight in the sense that for a given erasure pattern and parity

check ordering, at least one codeword will, when transmitted, require the

sequential decoder to visit N nodes.
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However, it is not practical to compute N because it is difficult to deter-

mine when 6i= 1. Even if one could compute this bound easily, there does

not seem to be an efficient way to minimize this bound over the set of possi-

ble orderings.

Instead, one can use a greedy heuristic in an attempt to find relatively

good orderings. In this method, the ordering is obtained by choosing the par-

ity checks one at a time. The first parity check is chosen to minimize N 1 .

The second parity check is chosen, from the remaining parity checks, to

minimize N.,, and so on. This is done until all the parity checks are chosen,

resulting in an ordered list. In general, Ni depends on each of the first i par-

ity checks. However, when Ni is minimized, the first i-1 parity checks have

already been chosen, so N i is not minimized over the set of all orderings.

Similarly, N is not necessarily minimized. However, this formulation leads to

an efficient algorithm, and it works well in simulations.

The implemented algorithm, called the Minimum New Erasures (MNE)

algorithm, differs from the one described above by ignoring the 6. term in the

formula for ai (2.2). This is equivalent to choosing Ci by minimizing ei,

hence the algorithm's name. This simplification results in a much more effi-

cient algorithm, and the change in performance is minor. To see this, note

that 6/ rarely equals one. Furthermore, ignoring 6- will make a difference only

if a parity check with 6.=1 is chosen instead of a parity check with ei = 0 and
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=0. In any case, all parity checks with ei = 0 will be chosen before any with

ei.> 1.

A straightforward implementation of this algorithm searches the entire I
set of unused parity checks every time a new parity check is chosen. Also, I
the number of new erasures involved in each parity check is recalculated for

every search, since the definition of "new" changes. For an (n, j,k) low den-

sity code, where n is the blocklength, this implementation requires O( j2 n2/k) I
computation and O(jn) memory. A more efficient implementation, 3
presented in Section A.2, requires O( in) computation and O( jn) memory. I
2.2 Simulation Results I

The MNE ordering algorithm was implemented on a computer. To form

a complete decoder, as discussed in Section 1.1, the MNE algorithm was cou- I
pled with the stack algorithm (see Section 7.2.7 of Clark and Cain [3]), a stan- -
dard sequential decoding algorithm. Although the sequential decoding algo-

rithm described in Section 3.3 was used with the algorithms presented in U
Chapter 3, it was not used here, because the stack algorithm was found to 3
work sufficiently well for low-density codes on the BEC. It worked well

because the stack, which contains only codeword fragments that agree with

the unerased portion of the message, stayed small - less than 30 entries for 3
each trial.

I
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Fixed weight pseudorandom erasure patterns were generated and decoded

by the computer, and the results were used to estimate the expected amount

of computation and the probability of decoding failure. The measure of com-

putation was the number of steps performed by the sequential decoder;

specifically, the number of times the entry at the top of the stack was

extended. The all-zeros codeword was always used. To compensate for this,

the sequential decoder searched the codeword tree branches in reverse

numerical order, and thus the all-zeros branch was always searched last. As a

result, the expected computation and probability of decoding failure are upper

bounds to what would be expected with random codewords.

The MNE algorithm was tested with three low-density codes, with param-

eters (396,3,6), (396,4,6), and (396,5,6). All three codes have blocklength

396, and their designed rates, given by 1-ilk, are 1/2, 1/3, and 1/6, respec-

tively. The objectives were to estimate the maximum number of erasures the

decoding algorithm could handle and to compare this number with what could

theoretically be achieved with standard sequential decoding.

Graphs of average computation and probability of decoding failure versus

number of erasures are shown in Figure 2.2. To gauge the effectiveness of the

MNE algorithm, simulations were also performed with a random ordering

algorithm, which chooses parity check orderings with equal probability for

each possible ordering. The results of using the two algorithms with the

(396,5,6) low-density code are shown in Figure 2.3. Finally, to extrapolate the
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MNE algorithm I
10000 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.C 8000 1
CL 6000-- - (396,3,6)

8 --- (396,4,6)

4000 (396,5,6)

U 20001

0'
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erasures 3
I

MNE algorithm I
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to .1 1
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- (396,5,6) 3
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CL .00014
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erasures I

I
Figure 2.2. Simulation results for the MNE algorithm used with (396,3,6),
(396,4,6), and (396,5,6) low-density codes.

I
I
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code c39656
10000*
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E -random
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Figure 2.3. Simulation results for random ordering and the MNE algorithm,
used with a (396,5,6) low-density code.
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results of Figure 2.2 to codes with different blocklengths, simulations were 3
performed using codes with fixed j and k values, but varying blocklengths.

This is shown in Figure 2.4, which contains graphs of normalized computation

versus normalized erasures for j = 3, k = 6 and j = 5, k = 6. Here, the nor- I
malized erasures are the number of erasures divided by n, and the normalized

computation is the amount of computation divided by nj/k, the number of

levels in the codeword tree. Note that all codes were chosen to have the pro- I
perty that no two parity check sets contain more than one digit in common, 3
as discussed in Section 1.4. An algorithm to generate such codes is included

in Section A.1. I
To illustrate how the graphs were obtained, Figure 2.5 contains a table of I

simulation results for the MNE algorithm used with the (396,5,6) code. The 3
table is broken up into two parts because of space limitations; two sets of tri-

als were not performed for each data point. After each trial, which consisted

of decoding a fixed weight psuedorandom erasure pattern, the average compu- 3
tation, c, and the measured standard deviation of computation, s, were calcu-

lated. The standard deviation of c, denoted by S, was estimated by S = sI/t,

where t is the number of trials. This relation assumes independent trials. I
For each data point, the computer performed at least 200 trials and at most 3
3000; within this range, it stopped if 9 < (.025)c". The number of trials result-

ing in decoding errors, NE, and the number of aborted trials, NA, were

recorded as well. A trial was aborted if the number of steps performed by
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j=3, k=6
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50-

0.

E n =198
8 30

-a---n = 396
20 -0-- n = 600
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0.3 0.4 0.5 0.6

normalized erasures

j=5, k=6
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00

0. 4 - - n = 96
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-0--- n=396

20 --- n = 600
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normalized erasurures

Figure 2.4. Simulation results for the MNE algorithm used with various low-
density codes, as shown.
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Measured Standard
No. of Average standard deviation

Erasures trials computation deviation of estimate
Data
point e T c S

1 195 200 331. 0. 0.
2 200 200 331. 0. 0.
3 205 200 332. 10.5 0.74
4 210 225 376. 141. 9.4
5 215 3000 751. 1086. 19.8
6 220 2339 2344. 2832. 58.6
7 225 642 5884. 3724. 147.

Prob. of
Decoding Aborted decoding
errors trials failure

Data
point NE N A  PDF

1 0 0 0.
2 0 0 0.
3 0 0 0.
4 0 0 0.
5 0 11 0.00367
6 0 174 0.0744
7 0 237 0.369

Figure 2.5. Simulation results for the MNE algorithm used with a (396,5,6)
low-density code.

I
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the sequential decoder reached ten thousand, or if the stack size reached 200.

However, the limit on stack size was unnecessary, because none of the trials

aborted for this reason. The estimated probability of decoding failure was

given by PDF = (NE+NA)/T, where T is the total number of trials.

Recall that one objective of the simulations was to estimate eMAX, the

maximum number of erasures that could feasibly be decoded by the MNE

algorithm. From the results shown in Figure 2.2, one can estimate eMAX to be

approximately 165, 195, and 210, respectively, for the (396,3,6), (396,4,6), and

(396,5,6) codes. (See Table 2.1.) These are conservative estimates; they are

the points at which the average computation first shows a significant increase

from its minimum possible value, nj/k + 1. From the results shown in Figure

2.3, the maximum number of erasures for random ordering with the (396,5,6)

code is approximately 45. As stated above, the performance of the MNE algo-

rithm is significantly better; it can decode roughly 4.7 times as many erasures.

Concerning the probability of decoding failure, note that decoding errors

occurred much less often than decoding failures. A decoding error occurs

when the sequential decoder completes its search, but outputs the wrong

codeword. As defined here, a decoding failure occurs if a trial results in a

decoding error, or is aborted due to too much computation. Out of 23,609

trials used to generate the graphs in Figure 2.2, only 4 resulted in decoding

errors. All 4 decoding errors occurred using the weakest code - the (396,3,6)

code. Thus, if the MNE algorithm is used on a channel with feedback and
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I
I
I
I

Table 2.1. Comparison of the MNE algorithm and standard sequential decod-

ing for the binary erasure channel.

I

Code parameters Rate Achievable eMAX Max. erasure Max. eSD for I
with MNE prob. for sequential sequential

n j k R (approximate) decoding decoding

396 3 6 1/2 165 0.4142 164.0

396 4 6 1/3 195 0.5874 232.6
396 5 6 1/6 210 0.7818 309.6

I
I
I
I
I
I
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retransmission capabilities, one can achieve decoding error rates several ord-

ers of magnitude smaller than PDF" However, the effective information rate

would be lower than the code rate, due to retransmissions. Note that for the

results shown in Figure 2.4, a significant number of decoding errors occurred

when using the (96,3,6) and (198,3,6) codes. It seems one should avoid using

blocklengths this small, because for the trials used to generate Figure 2.4,

none of the other codes had any decoding errors.

What can we conclude about using the MNE algorithm at rates above R0,

the computational cutoff rate for sequential decoding? Recall the estimated

values of eMAX for the (396,3,6), (396,4,6), and (396,5,6) codes; they are listed

in Table 2.1. These values represent what the MNE algorithm can achieve. It

is well-known that the formula for R0, given in Section 1.1, applied to the

BEC yields

R0  1- logz(l+e), (2.4)

where e is the channel erasure probability and R0 is measured in bits per

channel use. Inverting this formula yields the maximum erasure probability

that sequential decoding can handle for a given code rate. The codes listed

above have designed rates of 1/2, 1/3, and 1/6. Corresponding to these rates,

the maximum values of c for sequential decoding are listed in Table 2.1. For

each code, the resulting expected number of erasures per codeword, given by

n E and denoted by eSD, is listed in Table 2.1 as well.
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For the (396,4,6) and (396,5,6) codes, eMAX for the MNE algorithm is

significantly less than eSD. Thus, it seems that one cannot exceed R0 using

the MNE algorithm with these two codes. However, the (396,3,6) code looks I
more promising. The value of eSD for this code's rate and blocklength is 5
164.0, while eMAX was estimated to be 165. These values are too close to

yield a clear conclusion, and when using the MNE algorithm, the maximum

acceptable value of E will depend on the specific application. Nevertheless, it I
is remarkable that a randomly chosen (396,3,6) low-density code performs this 1
well, because the result for standard sequential decoding is an upper bound

that applies to all tree codes. 1
Table 2.1 shows that the MNE algorithm performs better with respect to 3

sequential decoding as the code rate increases. This suggests that the per-

formance may continue to improve with code rates greater than 1/2. How-

ever, Gallager's result discussed in Section 1.3 shows that the typical I
minimum distance of an ensemble of (n, j,k) low-density codes grows linearly 3
in n only if j> 3. For this reason, simulations were not performed with

(396,2,6) or (396,1,6) codes. It would be desirable to study low-density codes

with rate R = 1--ilk > 1/2 and " > 3 to determine whether the MNE algo- -
rithm can clearly outperform standard sequential decoding.

To achieve an arbitrarily low probability of decoding error, one must use

codes with arbitrarily large blocklengths. This leads one to question whether I
the results presented above can be extrapolated to low-density codes with 3
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larger blocklengths. The graphs shown in Figure 2.4 shed some light on this.

Both graphs seem to indicate that the cutoff point, where the average compu-

tation starts to increase, occurs at roughly the same value of normalized eras-

ures, as n varies and with j and k fixed. In other words, for fixed j and k,

the number of decodable erasures when using the MNE algorithm increases

linearly in n. If this hypothesis is true, then using the MNE algorithm with

low-density codes is truly comparabie to standard sequential decoding, in the

sense that codes with arbitrarily long blocklengths will work well on a channel

with fixed erasure probability. This behavior is expected, since the typical

minimum distance of an ensemble of (n, j, k) low-density codes grows linearly

inn, for j>3.

Note that this discussion implicitly assumes that the codes used in the

simulations are "typical" low-density codes. This assumption is reasonable in

light of Gallager's result presented in Section 1.3. It states that almost all the

low-density codes in his ensemble have minimum distance greater than a sin-

gle lower bound, 6 jk n. In addition, in Chapter 3, the simulation results

obtained using two randomly chosen (396,5,6) low-density codes are found to

be very close.

One feature that limits the SDR approach, that is not encountered in

standard sequential decoding, is that codeword trees for low-density zodes

tend to grow more rapidly near the beginning than near the end. This hap-

pens regardless of the parity check ordering, as discussed in Section 1.2.
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Thus, the early part of the tree looks like a code with higher rate than the ori-

ginal code. This is a drawback, since the sequential decoder works well only

at rates less than R0. However, the MNE algorithm tends to push erased

digits toward the end of the tree, and this helps the sequential decoder. The

net result of these effects determines whether the overall performance is

better than standard sequential decoding. Another limitation of the SDR

approach is that the distance properties of low-density codes are probably not

as good as those of arbitrary tree codes.
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CHAPTER 3

SDR ALGORITHMS FOR THE BINARY SYMMETRIC CHANNEL

3.1 Codeword Tree Ordering Algorithms

The binary symmetric channel (BSC) is a discrete, memoryless channel

with transition probabilities as shown in Figure 3.1. With probability p, an

error occurs; otherwise, the input symbol is unchanged. The error vector, e,

is defined by

ei = XiSY i , (3.1)

where ( denotes mod 2 addition. In contrast with the binary erasure chan-

nel, it is not immediately apparent when an input symbol is incorrectly

received.

Since every digit in the received message, taken by itself, is equally reli-

able, it would seem that the ordering algorithm has no information to work

with. With this view in mind, the algorithm would choose an ordering that in

some way minimized the size of the codeword tree, and it would use this ord-

ering regardless of the received message.

However, one may generate a reliability measure for a received digit by

considering the values of other digits and using the structure of the code. For

example, suppose one of the parity equations of the code states that for every

codeword, x1 and x5 must sum to zero, mod 2. If y1 and y5 are both zero,

then the probability that y, is in error is less than its a priori probability, p,
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i-p1
0 0

pI

p1

p1

Figure 3. 1. The binary symmetric channel.3
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assuming p< 0 .5 and equally probable codewords. With this approach, it is

possible to obtain different reliability levels for different digits, and this infor-

mation can be used by the ordering algorithm to generate an ordering that

depends on the received message.

One may think of a reliability measure for bit i as an estimate of 1-e i .

In other words, the optimal reliability measure, if it could be computed,

would equal one if Yi = xi, and zero otherwise. Since e, is modeled as a ran-

dom variable, a Bayesian estimator can be used. One cost function for com-

paring Bayesian estimators is the mean-squared error , E(O- 0)2, where 0 is

the estimate and 0 is the quantity being estimated. Given that we observe y,

the channel output, the minimum mean-squared error (MMSE) estimate is the

conditional mean, E(1-ej I y). Equivalently, this estimate is given by

P(Yi = xi I y).

However, it is not advisable to use this estimate in this situation. Condi-

tioning on the entire received message would probably require a great deal of

computation, and the ordering algorithm's purpose is to reduce the complexity

of the sequential decoder. In addition, computing this estimate corresponds,

in a sense, to fully decoding the received message. The output, i, would be

given by

S"i = arg max P(x i = j lY). (3.2)
j-0,1

Instead of being the most probable codeword, ^ would minimize the
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probability of error for each digit. Such a scheme, sometimes referred to as 3
probabilistic decoding, does not necessarily output a codeword. This

approach would invalidate the proposed structure of the decoding algorithm, I
because the ordering algorithm is intended only as a preprocessor for the 3
sequential decoder.

Instead, one could consider using a coarse, easily computable reliability

measure that would nevertheless lead to an improvement over the static order- I
ing described above. Fortunately, one may compute such a measure for low- 3
density codes. For a given digit i, it is found by considering Vi , the number

of violated parity checks involving digit i. The reliability measure is defined

by 1

Pi = P(yi = Xi i(3.3) 3
where the joint probability distribution of the xi's is obtained by assuming 3
each codeword is transmitted with equal probability. This quantity may be

interpreted as the MMSE estimate of 1-e i , given that we observe only Vi. I
Assuming that no two parity checks have more than one digit in common, its I
value is given by the following expression:

1
P(Yi = xi I Vi) = (3.4)

where 3

I
I
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1- (1-2p)' - 'fl=
1+ ( 1 -2p)k1

p = channel error probability

j,k = low-density code parameters

A proof is given below, but first note that in an (n, j, k) low-density code,

each digit appears in j parity checks, thus

0 < Vi < j• (3.5)

For a given channel and low-density code, P(yi = xiIVi ) depends only on Vi ,

hence the reliability measure will assume only j+1 distinct values. These

values may be efficiently stored in a table, so that one need not recalculate

the above expression.

Proof of (3.4): Let Ci1 be one of the j parity checks involving digit i, Al

the event that Ci 1 is not satisfied by y, and

a = P(A [Yi = Xi)" (3.6)

Parity check Ci is not satisfied if. and only if there are an odd number of

errors among the digits involved in Ci, . There are k.-1 digits other than i

involved in Ci,, and Lemma 4.1 of [7] shows that

1 + (1-2p) k - 1

2

1 - (1- 2p) (3.7)
2



I
52 1

Whether or not a parity check is satisfied depends only on the error vec- g
tor, e. Recall the assumption that no two parity checks have more than one

digit in common. Then, given yi=xi, the j events A 1, • • , A1 depend on I
mutually exclusive subsets of e, and are therefore independent. Then Vi is 3
binomially distributed with parameters (j, ce), and

P(Vi=vlYi=Xi)= () V(1-o)j-v .  (3.8)
V

Given yi = xi, A, occurs if and only if there are an even number of errors

over the remaining k-1 digits in Ci1 . Thus,

P(A IYi * xi) = 1-e. (3.9) 3
The random variable Vi is again binomially distributed, but now with parame- I
ters (j, l-a). 3

P(Vi=vi Xi)= ) 0(1-cJ-a)'v (3.10) 3
The desired probability, P(yi = xi Vi), may be written as 3

P(Vi= vIYi= Xi) P(Yi= Xi)P(Yi = xiV =v) = 3
P(Vi= V Yi = Xi P(Yi= Xi) + P(V V I Yi * xi) P(Yi 0 Xi)

(3.11) 3
Substituting (3.8) and (3.10) into (3.11), and defining/3 = o/(1-a), we obtain 3
(3.4). E" 3

I
I
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This reliability measure is closely related to one of Gallager's decoding

algorithms for low-density codes (pp. 42-45 of Gallager [7]). A brief descrip-

tion of the algorithm is given here; it is described more fully in Section 1.4.

Each digit is associated with j values between zero and one, and these values

are interpreted as the probability that the transmitted symbol was a one, con-

ditioned on different subsets of the received message. The algorithm is itera-

tive. Initially, each probability is conditioned on the received value of a single

digit, and in each iteration the conditioning sets are expanded to include more

of the received message. If the decoder is successful, all the values associated

with each digit converge either to zero or to one. The independence assump-

tions used to derive the update equations are violated after a relatively small

number of iterations, but the procedure is continued anyway and is found to

yield a good decoding algorithm.

The results of the first iteration of Gallager's algorithm are very similar to

the reliability measure defined above. Let i be a given digit. In the first itera-

tion, the conditioning sets for i are expanded to include Si , the set of all digits

that occur in the j parity checks containing i. However, to validate the next

iteration, each of the j probability values associated with i ignores the digits

involved in one of the parity checks. If, instead, we calculate a single value

that considers all the digits in Si , then we obtain the same quantity as the reli-

ability measure defined above, under the conditions defined below.
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Recall that our reliability measure is not defined by conditioning on Si' 3
but on Vi , the number of violated parity checks containing i. Even though Vi

is a coarser statistic than Si , the two definitions result in the same value if the

following two conditions hold: 3
(1) Each codeword in the code is transmitted with equal probability. 3
(2) There is no derived parity equation, involving only digits in Si , that is

satisfied by the code and linearly independent of the j equations involv-

ing digit i. 3
This is proved as Proposition 3.1 below. We use V instead of Si because 3
(3.4) is easier to evaluate, though less general, since it applies only to the

BSC, than the formula for P(y= xi ISi) given by Gallager. For comparison,

P(yi = xi ISi) is given by any one of Equations (4.1) or (4.6) of [7], or Equation 3
(1.14) in this thesis. To show that P(yi=xiIVi) = P(yi= x i ISi), we can obtain 3
(3.4) directly from Gallager's formula for P(y = xiIS), by inserting values

appropriate for the BSC. However, Gallager's probability model is defined 3
differently than the one used here. Nevertheless, we can show that the 3
models are equivalent when we restrict our attention to the digits in Si , which

is sufficient for our purposes. Instead, we will show

P(yi = xi IVi) = P(yi = xi ISi) for the model used here - namely, assumptions I
(1) and (2) above, together with a memoryless BSC. 3

I
I
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Note that an equation as described in (2) can occur because the code-

words satisfy not only the nj/k parity checks in the low-density code's defini-

tion, but all linear combinations of them as well. However, as Gallager

states, the effect of the extra dependencies that occur if condition (2) is

violated is typically small.

We use the following fact. Its proof is elementary and is omitted here.

Fact. Let C be a linear code with blocklength n, and let R C {1,2,... ,n}.

Let PC(R) be the set of all possible parity check equations that involve only

digits in R and that are satisfied by all codewords in C, and let xR be an

assignment of values to digits in R. Then xR will match some codeword in C

if and only if xR satisfies PC(R). In addition, if a random codeword is chosen

uniformly from C, then every valid xR is equally probable.

Proposition 3.1. P(yi = xi I Vi) = P(yi = xi ISi), under conditions (1) and

(2) stated above.

Proof: Let R C {1,2,...,n} be the union of the j parity check sets involv-

ing digit i. In other words, R is the set of indices of the digits that make up

Si . For all vectors in this proof, we restrict our attention to elements inaexed

1 by R. This applies to codewords as well as error vectors.

I Define v(a) for a vector a E {O,1} R to be the number of violated parity

I'
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checks involving digit i. Suppose a1 and a2 satisfy v(al)= v(a 2). Then we will

show

P(yi-Xi ISi--al)= P(yi=xi ISi=a2). (3.12)

Let T =l(xl 
1,), ) .... } be the set of all pairs of codewords and

error vectors that result in a received message with Si = a1, and similarly 3
define T2= f{(x4l),ezl)) (2),e 2)),... } for a2. We will demonstrate a one-to-

one mapping from T1 onto T 2, and use this to show P(T 1)= P(T 2). The

underlying probability model is that the transmitted codeword is chosen uni-

formly from the set of all codewords, and the error vector is generated by a 3
memoryless BSC.

Note that every valid codeword occurs in both T1 and T 2. Recall that we

consider only digits with indices in R. From the assumptions and the Fact, a

valid codeword is a vector in {0,1}R that satisfies the j parity checks that 3
involve digit i. In addition, each such vector is equally probable.

Without loss of generality, we can assume that the violated parity checks

that contribute to v(al) are the same parity checks that contribute to v(a 2). 3
This implies that x+al+a 2 is a valid codeword if x is. Otherwise, we can 3
achieve this condition by rearranging the digits in each of the vectors in T2 ,

creating a new set T 2'. Specifically, the digits involved in some violated parity

checks are interchanged with those involved in some satisfied checks. The 3
codewords are still valid, and clearly P(T 2 ')= P(T 2 ). 3

I
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The desired mapping 4) from Ti to T2 is given by

3((x,e)) = (x+a,+a 2,e) . (3.13)

It is clearly one-to-one and onto. Since each codeword is equally probable,

this shows P(T1) = P(T2). Equivalently, since P(T1) = P(Si=al) and

3 P(T2) = P(Si=a,), we have P(Si=al) = P(Si=a2). Similarly, we can show

3 P(yi=xi and Si=al) = P(yi=xi and Si=a 2)" In this case, the error vectors in

T1 and T2 are constrained to be zero in position i. Therefore,

P(yi=xi ISi=a,) = P(yi=Xi I Si=a2 ). (3.14)

Finally, since P(yi=xiVi) is a weighted average of P(yi=xiISi=a) for all a

with v(a)=V, this implies P(yi=xI Vi) =P(yi=xiISi). '-

I Once we have an easily computable reliability measure, we must decide

3 how to incorporate it in an ordering algorithm. This question may be

addressed by considering the ordering algorithm for the binary erasure chan-

nel (BEC). To recall, the BEC.algorithm does not compare complete . "ity

3 check orderings; instead, it constructs a single ordering by choosing parity

3 checks one at a time. At each stage, the chosen parity check is one that

minimizes the value of a certain function (the objective function), and this

3 function is derived from an upper bound to the number of nodes visited by

* the sequential decoder.

I
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This approach is not directly. applicable to the BSC; unlike the case with

the BEC, we have not found a reasonably tight bound on the number of

nodes visited by the sequential decoder, given the received message and the I
parity check ordering. It seems that such a bound would have to take into 3
account the fine structure of the low-density code being used (to a greater

extent than the BEC bound, which only considered the overlap between a

given parity check and the union of the previously chosen parity checks). I

Nevertheless, one can obtain an effectiv6 algorithm by choosing an

appropriate objective function. Specifically, we consider objective funct;ons

that tend to maximize the reliabilities of the new digits and tend to minimize

the number of new digits, where the new digits in a parity check are the ones 3
not contained in any of the previously chosen parity checks. Recall that if a

given parity check is chosen to be ith in the final ordering, then the new digits

in this parity check are the ones filled in at level i in the codeword tree. I

Consider the effect of this aigorithm on a given level of the codeword 3
tree. If we maximize the reliability of the new digits, then the sequential

decoder will be less likely to start along an incorrect path, or if it is already

on an incorrect path, it will be more likely to detect this. On the other hand,

when we minimize the number of new digits, the growth of the tree at this 3
level will also be minimized. As a result, there are fewer nodes to search,

and there is less likely to be an outgoing branch close enough to the correct I
branch to appear correct. However, it may not be possible to fulfill these two 3

I
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aims simultaneously, thus the objective function will have to define their rela-

tive importance.

Since the algorithm avoids choosing parity checks with unreliable digits,

the overnl! effect is to pusL. noisy digits deeper into the codeword tree. To

see why this is a good thing to do, recall that regardless of the parity check

ordering, the codeword tree tends to grow more slowly at deeper levels. (See

Section 1.4.) For this reason, a wrong move by the sequential decoder at the

beginning of the tree will probably require more computation to resolve than a

wrong move toward the end. In addition, errors toward the end of the tree

are less likely to cause a wrong move, especially if the error occurs at a level

where the tree does not grow in size (one new digit per level).

These objective functions do not depend on the reliabilities of the old

(i.e., already filled) digits, but there are situations where such dependence

may be desirable. For example, one could choose successive parity checks to

minimize the reliabilities of the old digits in the new parity checks in order to

detect incorrect moves by the sequential decoder sooner, since an incorrect

assignment can be detected only at a level where it occurs as an old digit.

However, it would be difficult to tell when this would be helpful, since an

incorrect assignme;'t of an old digit may be interpreted as a transmission error

in a new digit. In any case, it seems that this would rarely be more important

than the factors discussed above.



60

Several different objective functions with the properties described above

were used in algorithms implemented on a computer. They are listed in Fig-

ure 3.2. A description of these functions is given below, and simulation

results are presented in Section 3.2. First, we present some definitions, and

discuss the computational complexity of the algorithms. We use the following

terminology. The objective function is denoted by E, and its domain is the

set of parity checks. For a given parity check, N is the set of new digits,

which are defined as above.

Each ordering algorithm operates as follows. The objective function is

evaluated at each parity check, and a parity check that minimizes the function

is chosen. Since N will change for some of the parity checks, E is re-

evaluated for each remaining parity check before the next choice is made.

This procedure is repeated until a complete ordering is obtained.

The approach described above requires O(j 2 n2/k) computation and

O(jn) memory. A more efficient implementation is possible if E assumes

only a finite set of values, and has the additional property that when a parity

check's E value changes, it cannot return to - previously held value. These

conditions are satisfied by discretized versions of the objective functions

described below, except for functions 7.1 and 7.2. With these conditions, an

implementation exists with O(nj + njV/k) computation and O(nj + njV/k)

memory, where V is the number of values E can assume. The implementa-

tion is similar to the O(n) version of the MNE algorithm presente.. in Section
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1. E= j ( V +3)

iEN

1.1 C1=I, 3=0 1.3 c=0, 3=1
1.2 (,=1, 0<,3<1/k 1.4 0<a<1/jk, 3=1

' V,./INI if INI > 1,

2. E = iEN

0 otherwise.

3. E = Eh(i) , h(x) = -- logx-(I-x)Iog(l-x)

iEN

4. E = H- [ 1+ 2 V/p i ( 1-1,

iEN

5.1 E = 2 N Zmin(Pi.l-p,) 5.2 E = Emin(pi,l-pi)
iEN iEN

6.1 E = 2INI-1[1_flmax(),.- 6.2 E = 1-l-rmax(i,1-pi)

iEN iEN

7.1 7.2

E actual(l)-desired (1)l
E = [actual(l)-desired() E=total()

0<1 <j, (total (I))- 0< < j,

total(l)*0 total(l) o0

Figure 3.2. List of objective functions.
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A.2. The main difference from the MNE algorithm concerns the value of

each digit's contribution to E. With the MNE algorithm, E equals the

number of erasures in N. Thus, a digit's E contribution is one or zero,

depending on whether or not the digit is an erasure. With the BSC objective

functions, we must store each digit's E contribution in a size n array. Using

this array, we can determine the effect on E of removing a digit from N in a

constant number of steps. Without the array, we must recalculate E from

scratch, which requires 0(k) steps.

3.1.1 Objective functions

Definitions. As above, E is the objective function, and N is the set of

new digits for a parity check. For 1 < i < n, we define

P = P(Yioxi I Vi) " (3.15)

The function P0 is a probability distribution on x and y that differs from the

BSC model by setting P0 (Yi * x) = Pi"

1. E=3 (ceV/3),

iEN

where a and fi are constants, and Vi is the number of violated parity checks

involving yi. Using Vi itself as a quantitative measure of uncertainty was arbi-

trary, but this objective function was found to work well. Different values of

c and 13 yield different orderings, and the following values were implemented.

I
I
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1.1 o1=i, /=0

Minimizes 1 1 .

iEN

1.2 a=l, 0<0<1/k

Since each Vi is an integer, and IN I <k, this causes the algorithm to minim-

ize E Vi , and break ties by minimizing IN I.
iEN

1.3 ca=0, 0=1

This yields a static ordering, which minimizes I NI. The ordering is indepen-

dent of the received vector y. It is obtained without any knowledge of the

reliabilities of the individual digits.

1.4 0< <1/jk, i3=1

Since V':5j, E Vi ] k. Thus, the algorithm minimizes IN] and breaks ties

iEN

by minimizing F Vi .

iEN

EVill NI if INI > 1,

2. E - iE N

0 otherwise.

This algorithm tries to choose a parity check with smallest uncertainty per

new digit.
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3. E h Z (pi),

iEN

where h is the entropy function,

h (x) = - x log x - (1-x)log(1-x). 3
4. E=I [1+2\/Pi(1-Pi) I

iEN

One interpretation for this algorithm is that it maximizes E (Ro(pi)- ri), I
iEN

where I
Ro(pi) = 1- log211+ 2/1Pi(1-pi

) ]

= the computational cutoff rate in bits for

a BSC with crossover probability pi

and 3
ri (INI-1)/INI I

the approximate local code rate in bits.

Motivation for this objective function conies from two bounds to the expected I
amount of computation performed by a sequential decoder - an upper bound I

due to Gallager (p. 279 of [5j) and a lower bound due to Arikan (Lemmas 3.1

and 6.1 of [1]). If one extends these bounds to the case where the code rate

and the crossover probability can vary with time, the given objective function I

minimizes both these bounds. However, the original bounds are loose, and

the extensions may not be valid. I
I



II
iI 65

5.1 E = 2INI-1 min(pi,1-pi )

iEN

5.2 E = E min(pil-pi)

iEN

The expression E min(pi,l-pi) is a union bound approximation to

iEN

P(. xi for some i E N), where P0 is the probability distribution defined

previously, .i= arg max F(x,y1 ), and r is the sequential decoder metric.
x-O,1

Since F(.i,yi)> F(1-9i,yi), the sequential decoder will most likely assume

xi = i on its first pass. The quantity 2 IN I-1 is a cost chosen to reflect the

local growth of the codeword tree if the current parity check were chosen.

6.1 E = 2 IN I-1 [ 1- I-I max(pi,1-pi)]
iEN

6.2 E = [1- I fmax(pi,1-pi)I3 EN ,j

The expression [ 1- J-[ max (pi, 1-pi) ] equals P0(.i =A xi for some i E N). As
iEN

with objective function 5.1, 2 IN -' is a cost associated with this event.

2
7.1 E = YJ [actual (l)-desired (1)]

o<< j, (total (1))2

total (1)o

7.2 E = E Lactual (1)-desired (1)

7<.<_j, total (1)

total(t) -o

Here, total(l) is the total number of digits in the received message with
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V=lI. The quantity desired(l) is defined to be (no/n)total(l), where no is

the number of digits encountered in the codeword tree so far, and actual(l) is

the number of such digits with Vi = 1. Thus, these objective functions try to

distribute the digits with a given value of Vi evenly throughout the tree.

3.2 Simulation Results

The objective functions described in Section 3.1 were used in codeword

tree ordering algorithms implemented on a computer. To form a complete

decoder, as discussed in Section 1.1, each ordering algorithm was coupled

with a sequential decoder. Because standard sequential decoding algorithms

did not work well with low-density codes on the BSC, a new sequential

decoder was used. It is described in Section 3.3.

The simulations performed for the BSC algorithms are similar to those

described in Section 2.2. Fixed weight psuedorando n error vectors were gen-

erated and decoded by a computer, and the results were used to estimate the

expected amount of computation and the probability of decoding failure for

each algorithm. In this case, the measure of computation was the number of I
forward and lateral moves performed by the sequential decoder. As before,

the all-zeros codeword was always used. To compensate for this, the sequen-

tial decoder searched the codeword tree branches in reverse numerical order,

thus the all-zeros branch was always searched last. However, because of the

sequential decoder used, the expected computation and probability of

I
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decoding failure are not necessarily upper bounds to what would be obtained

with random codewords, as was the case with the BEC results.

The objective functions were compared using a fixed (396,5,6) low-

density code, denoted by c39656. Simulations were performed to estimate the

expected computation and probability of decoding failure as a function of the

number of channel errors. To study the effects of different j and k values,

objective functions 1.2 and 3 were tested with (396,3,6) and (400,4,8) low-

density codes as well. To gauge the effectiveness of the algorithms, we imple-

mented a random ordering algorithm, that chooses parity check orderings with

equal probability for each, with the (396,5,6) and (396,3,6) codes. Finally, to

investigate how typical c39656 was compared to other (396,5,6) codes, objec-

tive functions 1.1 and 3 were used with b39656, another (396,5,6) low-density

code. Graphs of the results are shown in Figures 3.4 through 3.10. Note that

all codes were chosen to have the property that no two parity check sets con-

tain more than one digit in common, as discussed in Section 1.4. A computer

program to generate such codes is included in Section A.1.

To illustrate how the graphs were obtained, Figure 3.3 contains a table of

simulation results for objective function 1.1 used with code c39656. Each

data point was generated using a procedure similar to that used in Section 2.2;

the differences are described below. The quantities c, s, and 9 are the same

as before, and the same stopping criterion was used. However, the sequential

decoder used here can declare a decoding failure, unlike the stack algorithm
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Measured Standard
Channel No. of Average standard deviation
errors trials computation deviation of estimate

Data
point e T C s

1 15 1442 5965. 5660. 149.
2 20 670 14750. 9533. 368.
3 25 857 26948. 19701. 673.
4 30 810 50208. 35719. 1255.
5 35 535 96797. 55968. 2420.
6 40 219 139605. 51523. 3482.

Prob. of
Decoding Decoding Aborted decoding
failures errors trials failure

Data
point NF NE N A PDF

1 0 0 0 0.
2 0 0 0 0.15 0 0 0.018 I

4 70 0 0 0.086
5 187 0 0 0.34
6 164 0 0 0.75

I

Figure 3.3. Simulation results for objective function 1.1 used with code I
c39656. Additional trials were performed to obtain better estimates of PDF

for e = 15 and e = 20. For e = 15, there were zero decoding failures out of I
4000 trials, and for e = 20, there were 3 decoding failures out of 4000 trials.

I
I
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code c39656
200000

0
E -- 1.2

100000 -. 1.2
-a-- 1.3

-0 1.4
Cu

0""

10 20 30 40 50
channel errors

code c39656
11

o°  , 1.4

.01 -U-- 1.3

0

C.

.001

. 00014 -

10 20 30 40 50

channel errors

Figure 3.4. Simulation results for objective functions 1.1, 1.2, 1.3, and 1.4
used with a (396,5,6) how-dcnsity code. For both objective functions 1.1 and
1.2, with 25 channel errors. there were zero decoding failures out of 4(XX) tri-
als.
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code c39656
200000

0

- 1.2
100000 2

8 3

0 4
cc

0

Ca 2

.0014

.00
10 20 30 40 50channel errors I

I

Fi gure 3.5. Simulation results for ol-,jective functions 1.2, 2, 1, and 4 usedI
with a (396.5,6)low-density code.

1*!
0!
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code c39656
200000

.25.
---- 1.2

-- 5.2
8I000005.

0 6.1

--- 6.2

0

10 20 30 40 50

channel errors

code c39656
1-

S .1
G 0 1.2

0~ 5.1
.01 - 5.20, 6.1
.01--- ---- 6.2

.001

0

10 20 30 40 50

channel errors

Figure 3.6. Simulation results for objective functions 1.2, 5.1, 5.2, 6.1, and
6.2 used with a (396,5,6) low-density code.
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code c39656 I
500000 I

, 400000

300000- 1.2
E- 7.1
8 - -- 7.2
0 200000 7

-0- random

100000

0 2 I i

10 20 30 40 50

channel errors

!

code c39656 I
1I

- 1.2
0

I
-C-- 7.1

-U-- 7.2

random
.001

..
CL .0001

10 20 30 40 50

channel errors I

I
Figure 3.7. Simulation results for random ordering and objective functions
1.2, 7.1, and 7.2 used with a ('196,5,6) low-density code.

I
I
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code c39636
500000

S400000
.2

~300000 -i - 1.2
Eo- 3

(200000 -- a- random

Wa 100000

0 - - -
5 15 25

channel errors

code c39636
1-

.G
-U---1.2

0

S .01

.0
0
CL .001

5 15 25

channel errors

Figure 3.8. Simulation results for random ordering and objective functions
1.2 and 3 used with a (3)96,3,6) low-densit,; ccde.
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code c40048
1000000

a 800000
.2

&. 600000
E;--" 1.2

w 400000 - 3

200000

0 
5 15 25

channel errors

code c40048
1 '

CD

.c.1

0
0- 1.2

0 • -U--- 3

>, .01

.00 .001

5 15 25

channel errors

Figure 3.9. Simulation results tor objective functions 1.2 and 3 used with a
(400,4,8) low-density code. For objective function 1.2 with 10 channel errors,
there were zero decoding failures out of 2477 trials.

i
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I codes b39656 and c39656
200000'

2 b39656
CL - 1.2

I 100000 c3

CD c39656

1.2

* 3

0'5 10 20 30 40 50

channel errors

I

codes b39656 and c39656
1"

ta) .1 b39656
-- 1 .2

I0 c39656
-- .001 3

L0001'

1 0 20 30 40 50

channel errors

I
Figure 3.10. Simulation results for objective functions 1.2 and 3 used with

two (396,5,6) low-density codes, b39656 and c39656.

I
I
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used on the BEC. As a result, the computer recorded NF , the number of

declared decoding failures, as well as NE, the number of decoding errors, and

NA, the number of aborted trials. In this case, a trial was aborted if the com-

putation reached 106; this higher value was used because steps performed by

the sequential decoder used here are simpler than those of the stack algo-

rithm. The estimated probability of decoding failure is now given by

PDF= (NF+NE+NA)/T, where T is the total number of trials. I

The functions that minimized the average computation were 5.1 and 6.1, 3
and the results for these two were nearly equal. Apart from the random ord-

ering algorithm, 7.1 and 7.2 performed worst. The average computation for

7.2 was as much as 12 times as great as that of 6.1. However, all the objec- I
tive functions performed better than random ordering, which required as

much as 16 times the computation required by 6.1. With respect to PDF' the

probability of decoding failure, objective function 1.2 performed best, closely U
followed by 1.1. Random ordering was worst, followed by 7.1 and 7.2.

Recall that PDF was defined to include decoding failures, decoding errors, 3
and trials aborted due to too much computation. As with the BEC results,

there was a surprising lack of decoding errors. A decoding error occurs when I
the decoder completes execution and produces an output, but the output is 3
incorrect. Out of a total of 112,898 trials, only two resulted in decoding

errors. Both errors occurred using objective function 1.2 with the (396,3,6)

code and 25 channel errors. This was the weakest code used; also, PDF was I
I
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0.634, hence this algorithm would probably not be used with this much chan-

nel noise anyway. Therefore, if these decoding algorithms are used on a

channel with feedback and retransmission capabilities, one can achieve decod-

ing error rates several orders of magnitude smaller than PDF" However, the

effective information rate would be lower than the code rate, due to

retransmissions.

The relative performance of random ordering and functions 1.2 and 3

observed with the (396,3,6) and (400,4,8) codes was the same as that observed

with code c39656. This reinforces the hypothesis that an ordering algorithm

that performs well for one value of j and k will also perform well for other

values. The average computation for the (400,4,8) code was roughly eight

times greater than that of the (396,3,6) code, while PDF was greater for high

channel noise and less for low channel noise. Note that both these codes

have the same designed code rate, 1/2. Thus, it seems that increasing k will

dramatically increase the average computation, even when the code rate is

kept fixed.

With regard to b39656, the second (396,5,6) code, the results agreed very

well with those obtained with c39656. This reinforces the claim that c39656 is

a typical (396,5,6) low-density code. It should be stressed that b39656 and

c39656 were chosen randomly, without regard for their performance.

From the simulation results, it appears that objective function 1.2 per-

formed best overall. Its average computation was comparable to that of the
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minimum observed values, and its probability of decoding failure was lowest.

This leads one to consider what characterizes a good objective function. It

seems unlikely that Vi itself is an exceptionally good quantitative measure of

digit reliability, even though it was used this way in function 1.2. Why should 3
a digit involved in three violated parity checks be 1.5 times as unreliable as a 3
digit involved in two? Instead, it seems that function 1.2 performed well

because its measure of digit reliability was discrete. This allowed the ordering I
algorithm to consider a group of parity checks with relatively good digit relia- -
bilities, and of these, choose the one with minimum IN I. With this

approach, the digit reliability measure need not be extremely accurate, and the

exact tradeoff between maximizing reliability and minimizing I N I need not be 3
specified. Thus, one would expect that discretizing any of the reliability meas-

ures used by the relatively good objective functions - namely, 3, 4, 5, and 6 -

together with breaking ties by minimizing IN[, will result in a good ordering I
algorithm. 3

What conclusions can we draw concerning the feasibility of this approach

at rates greater than R0 , the computational cutoff rate for sequential decod-

ing? Note that this discussion applies only to the binary symmetric channel. I
First, we consider low-density codes with j = 5 and k = 6, which have 3
designed code rate R = 1-ilk = 1/6. It is well known that the formula for

R 0 , given in Section 1.1, applied to the BSC yields I
[
I
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R= 1-log 2 [l+2Vp(1-p)], (3.16)

where p is the channel error probability and R?0 is measured in bits per chan-

nel use. The value of p corresponding to R 0 = 1/6 is p = 0.1882. For block-

length n = 396, this leads to an expected number of errors per codeword given

by np = 74.5. To decide how many errors per codeword can be handled by

the best BSC algorithm, we used a different criterion than for the BEC. This

was done because average computation on the BSC did not increase as

abruptly as on the BEC. The criterion used here is that PDF should be less

than 0.1. Then, at most 30 errors per codeword can be handled by the best

algorithm presented here. This is summarized in Table 3.1. Thus, it does not

appear feasible to use these alg&rithms at rates greater than R0 for rate 1/6

codes.

However, low-density codes with different values of j and k are more

promising. Table 3.1 contains data for the (396,3,6) and (400,4,8) codes used

here. Both have designed rate R = 1/2. As above, PDF < 0.1 was used to

determine feasibility. The results for these codes are very close to the max-

imum performance of sequential decoding. This is quite good, because the

low-density codes were chosen at random, without regard for their perform-

ance, and the result for sequential decoding is a maximum for all tree codes.

More study, including simulations using codes with longer blocklengths, would

show more accurately whether these algorithms allow one to exceed R0.
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I
I
I
I

Table 3.1. Comparison of SDR algorithms and sequential decoding for the
binary symmetric channel.

I

Code parameters Rate Achievable np Max. crossover Max. np for
with SDR prob. for sequential sequential

n j k R (approximate) decoding decoding U
396 5 6 1/6 30 0.1882 74.5
396 3 6 1/2 17 0.0449 17.8
400 4 8 1/2 17 0.0449 18.0

I
I
I
I
I
I
I,
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Since these algorithms perform better at rate 1/2 than rate 1/6, this leads

one to question whether they perform even better at higher rates. More work

is required to answer this question. It should be stressed that the results

3 given here are only lower bounds for what is achievable with SDR algorithms.

Other ordering algorithms, with possibly completely different structures, may

perform better.

m Some features that limit this approach, that are not encountered in tradi-

tional sequential decoding, include the following. As pointed out in Section

1.2, the codeword tree for a low-density code grows more rapidly near the

beginning than near the end. This is a drawback for the same reasons dis-

3 cussed in Section 2.2. In addition, low-density codes may not have as good

distance structure as arbitrary tree codes. Another important point is that the

BSC is, in a sense, the worst possible channel for SDR algorithms. Each

m digit at the channel output, taken by itself, is equally unreliable - unlike, for

m example, the binary erasure channel and the additive white Gaussian noise

channel. This makes it difficult to generate a good codeword tree ordering.

3.3 Backtracking Procedures and a New Sequential Decoding Algorithm

Without modification, the Fano sequential decoding algorithm (p. 269 of

1 [5]) does not work well with low-density codes. The problem occurs when the

m decoder decides it is on the wrong path due to a wrong move earlier in the

codeword tree. This happens when none of the branches at the current level

of the tree are close to the corresponding received digits; each branch causesI
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the path metric to fall below the threshold. In the Fano algorithm, the

decoder moves back one level and tries to move laterally. If it cannot find an

acceptable path, it moves back another level and again tries to move laterally.

This continues until the decoder reaches the most recent level at which the

threshold was raised, at which point it lowers the threshold and tries to move

forward again.

This procedure works well for convolutional codes, because if the

decoder makes a wrong move, the following levels of the codeword tree

quickly become independent of the received data. Thus, when the decoder

makes a wrong move, it will realize this within a few levels, and backtracking

one level at a time will quickly find the problem. This situation does not hold

for low-density codes. In a low-density code's codeword tree, it is possible to

have the two subtrees following a correct move and an incorrect move be

identical for many levels (for example, 50 or more levels in a 400 blocklength I
code).

This situation occurs because the labels of the branches at a given level

in the codeword tree depend only on the values of the few digits in the level's

o-set. Recall that each level in a low-density code's codeword tree I
corresponds to a parity check. The new digits at a level are those digits that

are involved in the corresponding parity check, but not in any of the previous

parity checks. The old digits at a level are the remaining digits involved in the I
level's parity check; they have already been assigned values earlier in the tree. 3

I
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As in Section 1.2, the set of new digits at a level is called the level's n-set,

and the set of old digits is called the o-set. The parity of a level's old digits

determines what values can be assigned to a level's new digits.

When a wrong move occurs, the two subtrees originating from the wrong

move and the correct move will be identical until one of the digits assigned

incorrectly in the wrong move occurs in some level's o-set. It is true that the

ordering algorithm favors parity checks with large o-sets, so that once a parity

check containing a given digit is chosen, other parity checks containing that

digit are more likely to be chosen. However, given an occurrence of a digit at

a level in the codeword tree, there is no guarantee for when its next

occurrence will be.

Instead of backtracking one level at a time, the decoding algorithm could

jump back to one of the levels that directly influence the current level. These

levels, called significant parents, are the places where the digits in the o-set of

the current level were initially assigned. Since we consider only low-density

codes for which ro two parity check sets contain more than one digit in com-

mon, the number of preceding levels that directly influence the current level

will equal the number of digits in the current level's o-set. However, since

this means there will be typically more than one significant parent, it is not

immediately apparent how to incorporate this into the Fano algorithm.

A sequential decoding algorithm that utilizes significant parents is

presented in Section A.3. A description of the algorithm is given below,



I
84

followed by a discussion of its features and a bound on its computational I
complexity. I
3.3.1 The sequential decoding algorithm I

This algorithm is similar to the Fano algorithm and unlike the stack algo-

rithm (Section 7.2.7 of Clark and Cain [3]) in that it stores only a single path

through the codeword tree. As in the Fano algorithm, the decoder calculates

a metric value for each branch of the path it takes. The metric is given

below. I

If ni > 0,
Fnx'y~ [ P(Yim'VirmtXim) 1

) = logI - ri .• (3.17)rn-i P(Yi ,Vm) .1
If ni = O,

0 if the parity check at level i is satisfied, I
r, = -(3. 18)

-00 otherwise. I
where

i'(x,y) - the metric value of the branch at level i with label xi = (Xi ),
n

when the corresponding received digits are Yi = (Yim)M-1

ni = the number of new digits at level i in the codeword tree

I
I
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Vi. = the error statistic associated with Yi,m

- the number of violated parity checks involving Yi,mI
ri = the local rate of the codeword tree at level i, defined below.

I The probabilities are calculated by assuming that the Xijm are independent and

P(xi'm = 0) = P(xi'm = 1) = 1/2. The relevant formulas are given in Section

3.1. This metric is the same as the Fano metric (given by L, in Section VII

of Fano [4]) except for the inclusion of Vi'm and r,, and the rule for determin-

I ing F' when n i = O.

The error statistic V.,, is discussed in Section 3.1. It is included as a

form of side information to estimate the reliability of a received digit. In an
(n, j,k) low-density code, there are only f+1 values that V.,,1can assume.

For each of these values, the log term above can have two values, depending

on whether or not Yi,m equals Xi, m . Thus, the log term will assume only

2(j+1) different values. They can be efficiently stored in a table and need

I not be recalculated.

The local rate, ri, replaces the fixed bias term in the Fano metric. The

bias term usually equals R, the code rate. The local rate is used because the

codeword tree for a low-density code does not grow with constant rate, as dis-

I cussed in Section 1.2. The local rate is given by

r = ,1 1(3.19)
n.
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where ni is defined as above, and 1i is the number of consecutive levels s

preceding i with n. = 0. In other words, i - 1i - 1 is the first level preceding i

with ni > 0. U
This definition is used because of the heuristic justification for the Fano I

metric given in Section VII of [4]. It seems that this justification implicitly I
uses the fact

E B, = log Si , (3.20)
t-1 I

where di is the number of digits encountered in the tree up to and including

level i, Bt is the bias term for digit t, and Si is the size of the tree at level i.

d I
For a fixed rate tree code, Si = 2 R , thus Bt = R satisfies (3.20). For a low-

density code's tree, Equations (1.2) and (1.3) give

log 2 Si = E (ni + ci- 1) (3.21)
in-1

where cei = 1 if parity check i is redundant, given the preceding parity checks,

and c =0 otherwise. If one ignores ci and divides the bias term contribution I
of a level equally among that level's digits, one obtains (3.19). For a ran-

domly chosen code, redundant parity checks will be rare, thus ignoring ci

should not have a significant effect. It was found in simulations that using ri

as the bias term worked much better than using R.

I
I
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The decoder can be in one of three states - Forward mode, Backtrack

mode, or Reset mode. Initially, the decoder is in Forward mode. Starting

from the root node of the codeword tree, the decoder moves forward one

I level at a time. At each level, the decoder chooses the first outgoing branch

3 with nonnegative branch metric. Note that it considers the branch metric, not

the cumulative metric. However, if the decoder reaches a level where all out-

I going branches have negative metric values, it enters Backtrack mode.

The level where the decoder enters Backtrack mode is denoted by

btilevel. The purpose of entering this mode is to find a new path in the tree

that has nonnegative branch metric at btjevel. However, as discussed above,

I this cannot be done efficiently by backtracking one level at a time. Instead,

the decoder makes a list of the significant parents of btlevel. It assumes it

made a wrong move at one of the parent levels, and tries to correct this by

U making changes at each of these levels, one at a time. It starts by jumping

3 back to the first parent on its list and choosing the first outgoing branch -

unless the original path followed the first branch, in which case it chooses the

second. Note that it makes this choice even if the resulting branch metric is

I negative.

3 The decoder then works its way back up to btilevel in the same way as in

Forward mode, with the following exception. If it encounters a level where all

outgoing branches have negative metric, it chooses the branch with greatest

3 metric and continues forward, instead of starting a new backtrack procedure.



88

When the decoder reaches btjevel, it stores the value of the cumulative path

metric.

This process is repeated for the other outgoing branches at the first I

parent level, and for all the parent levels, except that any branch choice which 3
was on the original path is skipped. Also, the last branch setting tried for

one parent must be reset before changing the next parent. The decoder then

decides whether to accept any of these changes. It considers the change with I
greatest cumulative metric at btievel. If this metric value is greater than the

original, it accepts the change; otherwise, no change is accepted.

At this point, the decoder enters Reset mode. The last change is reset to

its original value, and any accepted change is implemented. In addition, if a

change is accepted, its value is recorded. This insures that the change is i

remembered if the decoder passes through the changed level again, due to

another backtrack. Note this does not protect the level from further change

if it occurs as the significant parent of a new bt-level.

If there is now an outgoing branch at bt-level with nonnegative metric,

the decoder chooses the first such branch and reenters Forward mode. If all

branch metrics are still negative, two actions are possible, depending on the

value of ni for i = btJevel. If ni = 0, then the parity check at btevel is still

unsatisfied; the decoder declares a decoding failure and halts. If ni > 0, the

decoder chooses the outgoing branch with greatest metric and reenters For-

ward mode. This last event does not necessarily mean the decoder is on the 3
• I



I

89

* wrong path; channel noise can and most probably will result in negative

branch metrics even on the correct path.

The decoder continues in this fashion until it tries to move forward from

I the last level in the tree, at which point it is done. Its output is the valid

codeword corresponding to its final path.

Various shortcuts were used in the implementation of this algorithm. For

example, recall that one digit in a parent's n-set corresponds to a digit in the

I child's o-set. To limit computation, the decoder tried a branch setting at a

parent only if the setting changed the value of the digit in its child's o-set.

Otherwise, the branch metric at the child would not be raised, unless there

was some other chain of parent-child relations leading from the parent to the

child, an unlikely occurrence. For another shortcut, the decoder used only

* one pass to reset the last change at one parent and set the first change at the

next.I
3.3.2 Discussion

The sequential decoding algorithm described above is a fairly straightfor-

ward way to incorporate the idea of jumping back directly to a level's signifi-

cant parents. However, several other possibilities were considered, and it

seems appropriate to comment on some features of the present algorithm.

I In what follows, a backtrack procedure is a decision by the decoder that

3 it should change a branch setting at one of the significant parents of a level.

I
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In the sequential decoding algorithm described above, there is never more

than one active backtrack procedure at any given time. When the decoder

enters Backtrack mode, it either accepts a change in its path or it decides that

no change is necessary. In either case, the issue is resolved and the decoder

will never again enter Backtrack mode using the same btlJevel. The algorithm

is designed this way because the situation would become quite complicated if

multiple unresolved backtrack procedures were allowed. To see why, suppose

that several unresolved backtrack procedures are active, and the decoder

decides that it is on the wrong path. The decoder would have to decide which

set of parents to continue changing or whether to start a new backtrack pro-

cedure. In addition, the different backtrack procedures could perturb each

other. For example, a change made by one procedure could reassign a digit

in the o-set of a parent in another procedure. This changes the set of possi-

ble branch settings available at the parent, which could cause a good change

in the second procedure to look bad or cause the second procedure to skip

over a good change.

Another feature of the decoding algorithm is that, unlike the Fano algo-

rithm, the decision to start backtracking is based on branch metrics, not the

cumulative path metric. As discussed before, the two subtrees leading from a

correct move and an incorrect move may be the same for many levels. If the

decoder makes a wrong move, but moves through the incorrect subtree along

the path that matches the correct one, the path metric may accumulate a large
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positive increase. This could drown out negative branch metrics until it is too

late to discover the initial wrong move.

Recall that in a backtrack procedure, all potential changes are tried

before a final decision is made. This may seem wasteful; one could stop

backtracking immediately after an !c-eptable choice is discovered. NIow-ver,

suppose that a level's position in the tree is very close to one of its parents.

Then it is quite probable that a change at this parent would affect the metric

value only at the parent level and the child level. If the branch metric at the

parent level decreases, while the metric at the child level increases, the net

effect could easily be positive even if the change is incorrect. Testing all pos-

sible changes will insure that the correct change is considered, if it exists.

Ruling out changes in "close" parents would not work well either, because it

was found that too many necessary changes were missed.

Another possible remedy for bae, :xanges caused by close parents is to

evaluate changes at a level beyond bt-levei, denoted by stop-level. However,

it is difficult to determine where stopJevel should be located. One rule that

was implemented was to make a list of levels with negative branch metrics

beyond btlevel and choose stop.Jevel to be the entry at a fixed position in

the list. This tends to insure that there will be some coupling between the

changes made to a close parent and the levels traversed by the decoder.

However, it was found that wrong moves after btjevel introduced too much

uncertainty into the path metric value at stoplevel.
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Finally, two other significant changes in the algorithm were considered.

Recall that the branch metric value is -oc for an unsatisfied parity check at a

level with n, =0. Instead, this could be a finite negative number, and one

need not immediately declare a decoding failure if a backtrack procedure fails

to remedy the situation. This would give the sequential decoder more

chances to find any incorrect moves. However, this feature rarely decoded a

vector that was not decodable by the original algorithm, and it usually

required significantly more computation. Another possible change in the

algorithm is to backtrack through more than one level of parents; that is, con-

sider the parent of a parent, and so on. However, this would cause a huge

increase in the number of changes to consider.

3.3.3 A computation bound

The sequential decoding algorithm described above has the nice property

that the decoder always moves forward through the codeword tree, in a cer-

tain sense. More specifically, the decoder can enter Backtrack mode from

any given level at most once. From this property, one can easily obtain a

bound on the number of forward moves performed by the decoder. Here, a

forward move means any time the decoder moves from one level to the next,

regardless of whether the decoder is in Forward, Backtrack, or Reset mode.

The bound is given below.
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F < n 2(1-R)2k2 -
, (3.22)

where

F = the total number of forward moves

performed by the sequential decoder

(n, j, k) = low-density code parameters

R = the designed information rate of the code

= 1-i/k.

Proof: Suppose the decoder enters Backtrack mode with bt-level = i,

where i is a given level in the codeword tree. Let fi be the number of for-

ward moves performed by the decoder before it reenters Forward mode.

Then

fi <ai2 1 +i (3.23)

where a, is the number of old digits at level i, that is, the number of digits

assigned earlier in the tree. The first term is present because: (1) ai is the

number of parents of level i, (2) there are at most 2
k - 1 possible branch set-

tings for each parent, and (3) the number of levels between a parent level and

btilevel is strictly bounded by i. The second term bounds the number of for-

ward moves performed in Reset mode.

A given level can be btlevel at most once, thus FBR, the total number of

forward moves performed during Backtrack or Reset modes, satisfies
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FBR >f

nj/k

< Z(iai2 k-1+i)
i-I

1* 2 k-i1 i
2_ 1ni(n//k+1) + -(ni/k)(nj/k+ 1), (3.24)

since nj/k is the number of levels in the codeword tree, and ai < k for all i.

The number of forward moves performed during Forward mode, FF, equals

the number of levels in the codeword tree, or nj/k. Using F = FBR +FF and I
R = 1-j/k, we obtain the desired result. E] I

This bound is quite loose because it assumes that the decoder enters I

Backtrack mode from every level in the codeword tree. However, the bound

is much smaller than the total number of nodes in the tree, which is on the I

order of n R .  I

In practice, this decoding scheme would probably be used only if the

noise level was low enough so that relatively few backtrack procedures would

be necessary. The maximum noise level would depend on the code rate and I

the maximum tolerable amount of computation. 5
!
I
I



95

CHAPTER 4

CONCLUSIONS

4.1 Summary of Results

In this thesis, we presented several decoding algorithms, called sequential

decoding with reordering (SDR) algorithms. These algorithms are modifica-

tions of standard sequential decoding; they have the general structure shown

in Figure 1.2. These modifications were done in an attempt to operate at

rates greater than R0 , the computational cutoff rate for sequential decoding.

The SDR algorithms have two parts - an ordering algorithm and a

sequential decoder. The ordering algorithm chooses an ordering of the parity

checks that define the code being used. The sequential decoder uses this ord-

N ering to generate a codeword tree and searches this tree to obtain the decoder

output. The SDR algorithms are used with low-density codes, a class of

block codes. In this respect they differ from standard sequential decoding,

which can be used with any tree code. Low-density codes are used because

one can reorder their associated codeword trees, and the resulting trees have

bounded growth rate.

We presented SDR algorithms for two channels - the binary erasure

channel (BEC) and the binary symmetric channel (BSC). For the BEC, an

upper bound was derived for the number of nodes visited by the sequential

decoder. as a function of the parir" check ordering and the channel erasure
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pattern. This bound motivated the construction of an ordering algorithm, 3
called the minimum new erasure (MNE) algorithm.

The MNE algorithm was used in simulations with the stack algorithm, a

standard sequential decoding algorithm. The MNE algorithm performed 3
much better than random ordering. However, when used with a (396,5,6)

low-density code, with designed rate R= 1/6, and a (396,4,6) low-density

code, with R= 1/3, the MNE algorithm did not exceed the R0 bound, which I
represents the best that standard sequential decoding can achieve. The per- 3
formance was better for a (396,3,6) code, with R= 1/2. In this case, the algo-

rithm roughly matched the R0 bound. Simulations with longer blocklengths U
would indicate more clearly whether the R 0 bound is exceeded. I

Atso on Ei~e BEC, simulations verified the hypothesis that for a fixed 3
designed code rate, the erasure correcting ability of the MNE algorithm

increases linearly with blocklength. This behavior is characteristic of standard I

sequential decoding, but is not common among existing practical decoding I

schemes for block codes. In addition, in the feasible erasure region for the

MNE algorithm, the average computation of the sequential decoder portion

increased linearly with blocklength. I
For the BSC, several ordering algorithms were presented, as well as a 3

new sequential decoder. All the ordering algorithms have structures similar to

that of the MNE algorithm; they differ in their choice of objective function.

A list of various objective functions is shown in Figure 3.2. Through 3
I
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3 simulation, it was found that function 1.2 performed best. It performed signi-

ficantly better than random ordering. Using a (396,5,6), R = 1/6 low-density

code, the best BSC algorithm did not exceed the R0 bound. However, as

I with the BEC, performance improved at higher code rates. For both a

(396,3,6) and a (400,4,8), each with R = 1/2, the R 0 bound was roughly

matched. Again, simulations with longer blocklengths would provide more

information.

For both the BEC and BSC algorithms, decoding errors were much less

3 frequent than decoding failures. This feature could be used to advantage on a

channel with feedback and retransmission capabilities.

The BSC algorithms were used with a new sequential decoding algorithm,

31 described in Section 3.3. In a low-density code's codeword tree, the two sub-

3 trees originating from a correct move and an incorrect move may appear the

same for many levels, apart from the different assignments made at the level

where they originally diverge. As a result, backtracking one level at a time, as

31 in the Fano algorithm, can be very inefficient. For a low-density code, the

labels at a given level in the codeword tree depend on the assignments at a

small group of preceding levels, called the "significant parents." The new

31 sequential decoding algorithm is able to backtrack directly to a level's signifi-

1I cant parents. As a result, the algorithm may be applicable to other tree

search problems where, instead of a single level, it is desirable to consider

I several levels as possible backtrack destinations.
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The sequential decoder uses a modified version of the Fano metric. It

differs from the standard Fano metric in that it contains a variable local rate

term and also depends on the digit reliabilities computed by the ordering algo-

rithm. Finally, two other features distinguish this algorithm from both the 3
Fano and stack algorithms. It can declare a decoding failure, and its worst-

case computation is O(n 2 ), where n is the blocklength.

Reasons why SDR algorithms do not automatically outperform standard U
sequential decoding include the following. The SDR algorithms are con- -
strained to use only low-density codes, while standard sequential decoding can

use any tree code. As discussed in Section 1.2, low-density code codeword

trees do not grow at a constant rate; they tend to grow quickly near the begin- I
ning and slowly near the end. This is a drawback for reasons discussed in 3
Section 2.2. In addition, the features that required the use of a new sequen-

tial decoding algorithm make sequential decoding difficult for low-density 3
codes. In addition, low-density codes probably do not have as good distance 3
properties as arbitrary tree codes. Finally, the BSC is a particularly bad chan-

nel for SDR algorithms. Each digit at the channel output, taken by itself, is

equally reliable. As a result, the ordering algorithm does not have much 3
information to work with. 3

In conclusion, the performance of the SDR algorithms with rate ii2

codes is encouraging. The R0 bound for standard sequential decoding is an

upper bound that applies to all tree codes, while the SDR results were 3
I
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obtained using randomly chosen codes. In addition, since the relative per-

formance improved at higher code rates, SDR algorithms may outperform

standard sequential decoding at rates greater than 1/2. Note that if a low-

density code with rate greater than 1/2 is used, the code parameter j should

be greater than 2, as discussed in Section 2.2. Finally, the results presented

in this work are lower bounds to what can be achieved with SDR algorithms.

Other ordering algorithms may perform better.

4.2 Directions for Further Research

Most of the results presented in this work were obtained through simula-

tions. More could be said about asymptotic behavior if one obtained useful

analytic bounds on the expected computation and the probability of decoding

failure. It may be easier to determine average values for an ensemble of low-

density codes, instead of for a specific code.

Some more specific suggestions include the following. As discussed in

Section 4.1, it appears promising that SDR algorithms may exceed the R0

bound when using code rates greater than 1/2, and it would be worthwhile to

test this hypothesis.

All of the ordering algorithms presented here, for both the BEC and

BSC, choose parity checks without considering their effect on later levels in

the codeword tree. As an alternative, one could consider c parity checks at a

time, where c is a constant. For example, the MNE algorithm chooses parity



100

check i to minimize Ni. (See Section 2.1.) Using this approach, the modi-

fied MNE algorithm would determine the ordered set of c parity checks that

minimize N i + - • • + Ni+c_ . Only the first parity check in the set is chosen,

so tb -+ each choice is made with the same amount of foresight. This I
approach would require more computation than the original MNE algorithm, 3
but if the performance improved, it would allow one to trade off computation

in the ordering algorithm for computation in the sequential decoder. i

For the BEC, one could use the sequential decoder described in Section 3
3.3 instead of the stack algorithm. For the BSC, one could perform more

than one iteration of Gallager's decoding algorithm to generate digit reliabili-

ties. Again, this could be used as a computation tradeoff between the order- I
ing algorithm and the sequential decoder. Finally, a promising SDR algorithm

for arbitrary binary input memoryless channels is presented in Section 4.3.

4.3 An SDR Algorithm for Arbitrary Binary Input Memoryless Channels

In this section, we outline an SDR algorithm that can be used with any

binary input memoryless channel. This class of channels includes the BEC i
and BSC, discussed in Chapters 2 and 3, respectively, as well as channels

with side information and channels with real-valued outputs, such as the addi-

tive white Gaussian noise (AWGN) channel and the Rayleigh fading channel.

Recall that SDR algorithms consist of two parts - an ordering algorithm I
and a sequential decoder. The ordering algorithm used here, called the 3

I



101

entropy algorithm, is described below. The presentation loosely follows the C

programming language. First, we make the following definitions.

(n, j, k) : Parameters of the low-density code being used.

x = i)ij The transmitted codeword.

y = (yi)' 1  The channel output.

m = njlk The number of parity checks used to define the code.

{Ci, 1<i< m} • The parity check sets that define the code, in arbitrary

order. Each Ci C {1,2,...,n}. The parity equation corresponding to Ci is

E xa =0 (mod 2).

aECj

{C ', 1< i < m} An ordered list of the parity check sets.

f : A function on the channel output space, given by

f (Ya) = h(P(Xa = O1Ya)), (4.1)

where h is defined below and P is the probability distribution generated by the

channel model and the a priori input distribution. For a channel with side

information, the extra information would be included together with Ya in the

formula for f.
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h : The entropy function, given by

h(x) = - xlog x - (1-x)log (1-x). (4.2)

Input n, j, k, {Ci, 1<i<nj/k}, y 3

Output {C i ', 1<i<njk} 3

The Entropy Algorithm

m nj/k;
A ={1,2,...,n};
B f 1, 2,..., m;

for (i = 1; i <= m; i =i+1){

l =argmin[ F f(Ya);
bEB a E CbflA 3

C'= C1;
A =A\C1 ;
B = B\fj;I

This algorithm has the same structure as the ordering algorithms presented in I
Chapters 2 and 3. 3

The entropy algorithm can be combined with any sequential decoding

algorithm to obtain a complete SDR algorithm. However, we recommend the

sequential decoding algorithm described in Section 3.3, which is designed 3
I
U
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specifically for low-density codes. Pseudocode for this algorithm is included

in Section A.3.

The entropy algorithm looks promising because it includes as special

UI cases the MNE algorithm (Section 2.1) for the BEC, and objective function

1.3 (Section 3.1) for the BSC, both of which were found to work well. Also,

recall that one desirable objective of an ordering algorithm is to put parity

checks containing reliable new digits near the front of the codeword tree.

3 The entropy algorithm will tend to satisfy this objective, because the entropy

3 function is a natural additive measure of unpredictability. Finally, SDR algo-

rithms may work better on channels with real-valued outputs, such as the

AWGN, than on the BEC and BSC, because the output can attain a greater

3 number of reliability levels. This gives an ordering algorithm more informa-

tion to work with. In a sense, the Vi statistic, defined in Section 3.1, is an

artificial way of generating more reliability levels for the output of the BSC.

I The decoding algorithm described here can be used as a soft decision

3 decoder, because the form of the channel output is not constrained. Soft

decision decoders usually perform better than hard decision decoders,

U because less information is thrown away by the demodulator. Recall that all

SDR algorithms, including the one described in this section, are designed for

use with low-density codes, a class of block codes. Block code decoding

algorithms that handle soft decisions are uncommon.I
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At this point, we present some potential improvements in the entropy

algorithm. To begin with, it may be advisable to quantize the function f.

This can significantly reduce the difficulty of evaluating f. Next, define

E(b) = E f(Ya)" Whether or not we quantize f, there are good reasons

aECbnA

for quantizing E. First, this can lead to better orderings, as discussed in Sec-

tion 3.1. Second, we can reduce the computational complexity of the entropy

algorithm from O(n 2 ) to O(Vn), where V is the number of distinct values E

can assume, and j and k are fixed. This reduction is accomplished the same

way as for the BSC ordering algorithms and is outlined in Section 3.1.

In conclusion, the decoding algorithm presented here is designed for

low-density codes and can be used with any binary input memoryless channel.

In particular, it can be used on channels with side information and channels

with real-valued outputs and as a soft decision decoder. 3

I

| I iI
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APPENDIX
LIST OF ALGORITHMS

A.1 An Algorithm to Generate Low-Density Codes

A. 1.1 Preliminary remarks

The algorithms presented in the Appendix are described in nsuedocode,

using a syntax loosely based on the C programming language. Some features

that may be unfamiliar to those unacquainted with C include the following.

The operator "!=" means "is not equal to," and "==" means "is equal to."

SArrays begin at index zero, unlike Fortran. The presentation here differs

from C in several ways. For example, the words "or" and "and" are used

instead of "11" and "&&." Also, most argument lists for functions are not

I included, and some operations are described in words instead of computer

3 code. Function names are printed in boldface, and variables in italics.

The algorithm below attempts to generate the parity equations that define

a low-density code with parameters (n, j, k). The quantities n, j, and k must

3 be positive integers, with j < k and n a multiple of k. The parity equations

* are chosen to satisfy the additional condition that no two of them involve the

same group of two or more digits. It may not be possible to generate such a

I low-density code for given values of n, j, and k. For this reason, the algo-

3 rithm will halt if calls > calLmax. (A description of all variables is included

below.)

I
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The algorithm generates the parity equations in blocks of size n/k, as dis- -
cussed in Section 1.3. Each digit appears in exactly one parity equation in

each block. Parity equations are associated with rows in the parity matrix. I
The algorithm tries to fill each row using a random selection from the avail- -
able digits. A digit is not available if it appears earlier in the current block,

or if choosing it would cause two rows to overlap in more than one digit. If

there are no more available digits, the algorithm clears the row and starts I
over. It tries to fill a row at most r.max times, at which point it starts over at 3
the beginning of the current block. It tries to fill a block at most b-max

times, at which point everything is cleared and the algorithm starts over from U
scratch. This continues until either a code is successfully generated

(status = 0), or calls > call-max (status = 1). The codes used in this work

were generated using b-max = r.max = 25.

The algorithm makes use of an external function rando. It is assumed I
that invoking rand(seed), where seed is a non-zero floating point value, will 3
initialize a psuedorandom number generator. Subsequent calls of rand(0.)

will return a floating point value uniformly distributed over the interval [0,1).

This corresponds to the function rand() provided with UNIX Fortran. 3
A.1.2 Description of variables 3
b-max The maximum allowed value of block-tries. 

block The number of the current block being filled. Blocks start at
zero.

I
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block-failure
A flag that indicates block-tries > b-max.

block-filled A flag that indicates the current block has been successfully
filled.

block-tries The number of times the algorithm has tried to fill the current
block.

call-max The maximum allowed value of calls.

calls The number of times rand() is called, not counting the initial
call of rand(seed).

flag[i] A flag that indicates digit i has been included in a row in the
current block.

flag2[i] An array of flags that indicate forbidden digits for the current
row being filled.

i, Loop variables.

index The number of digits included so far in the current row.

j A low-density code parameter. The code being generated has
parameters (n, j, k).

k Another low-density code parameter.

n The blocklength of the code.

new-digit The new digit added to the current row.

open The number of available digits that may be added to the current
row.

other[i][s][i2]
An array used to insure that no two rows have more than one
common digit. other[i][s][i2] is the index of the i2-nd digit in the
row in block i containing digit s.

par[i][i2] This array stores the parity checks that define the code being
generated. par[l][i] is the index of the i-th digit involved in the
l-th parity check. Digits are numbered from 0 to n-1. The first
parity check has index one, not zero, in order to be compatible
with the decoding algorithm of Section A.3.

rando An external function that generates a random number uniformly
distributed over [0,1). It is described more fully in the Prelim-
inary remarks.

row The number of the current row being filled. Rows start at zero.

row-failure A flag that indicates row-tries > r.max.

rowfilled A flag that indicates the current row has been successfully filled.
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row-tries The number of times the algorithm has tried to fill the current
row.

s, s2 Integer temporary variables.

seed Initializes the random number generator.

status The output status of the algorithm. 0 = Code successfully gen-
erated, 1 = Algorithm stopped because calls > call-max.

stop A flag that indicates calls > callmax.

A.1.3 Storage requirements

All variables are integer valued, with the exception of seed, which is floating
point valued. The function rand() returns floating point values. The arrays
have the following sizes: 3
flag[n], flag2[n], other[j][n][k], par[nj/k + 1l][k]

A.1.4 The algorithm

Input n, j, k, seed, b.max, r-max, call-max

Output par, status, calls

Main program

{ /* Begin. */

stop = 0;I
block = 0;

/* Initialize random number generator. */ U
rand(seed);

while (block < j and stop == 0) {

Construct a block;
if (block.filled == 1)

block = block + 1;
else I

block=-0;

I
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if (block = I)
status = 0;

else
status = 1;

} /* End. */

Construct a block

{ /* Begin. */

block-tries = 0;
block-filled = 0;

while (block..filled == 0 and block-tries < b.max and stop == 0) {

block-tries = block-tries+1;

block-failure = 0;
row = block*n/k;
for(i =O;i <n;i=i+1)

flag[i] = 0;

while (row < (block+l)*n/k and block-failure =- 0 and stop = ) {

Construct a row;
if (row-filled == 1)

row =row+1;
else

block-failure - 1;

}

if (row == (block+l)*n/k)
block., filled = 1;

I}
return;

} /* End. */
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Construct a row

{ /, Begin. */

row0tries = 0I
row-filled = 0;

while (row-filled == 0 and row-tries < r-max and stop 0) { I
row-tries = row-tries+1;

index = 0;
row.failure = 0;
for (i =0; i < n; i =i+1)

flag2[i] = 0;

while (index < k and row-failure == 0 and stop 0) {

open =0; I
for (i =0, i < n; i=i+1)

if (flag[i] == 0 and flag2[i] == 0)
open = open+1;

if (open > 0) {

calls = calls+ 1;
if (calls >= call-max)

stop = 1;

/* Pick next digit. */
/* The value of s is a random integer, uniformly

distributed between 1 and open. */ 

s = integer part of (rand(O)*open +1);
new-digit = -1;
s2 = 0;
while (s2 < s) {

new-digit = new-digit + 1;
if (flag[new-digit] == 0 and flag2[new-digit] == 0)

s2 = s2+1;

par [row+1][index I = new-digit;
I* row+1 is used because par starts at one, not zero. "f

I



/* Update flag2. ~
for (i = 0; i < block-i1; i = i +1)

for (i2 = 0; i2 < k; i2 = i2+1){
s = other [i ][new-.digit]I[i2];
flag2[s] =1;

flag 2[newdigit I = 1;

index = index+ 1;

else
row- failure = 1;

if (index == k) f

/* This row is complete. ~

row-.,filled ==1;

/* Update flag and other. *
for (i = 0; i < k; i = i+1){

s =parfrow±1][i];
flag(s] 1 1;
for (02 =0; i2 < k; i2' .i2+1)

other [block ][s ][i2) = par [row +1][i 2];

return;

} * End. ~
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A.2 An O(n) Implementation of the MNE Algorithm

A.2.1 Preliminary remarks 3
The syntax used to present this algorithm is discussed in Section A.1,

and the MNE algorithm is described in Section 2.1. Briefly, the algorithm

takes as input the channel output vector and the set of parity checks that i
define the low-density code being used. Initially, the parity checks are in arbi-

trary order. The algorithm's purpose is to generate a new ordering, which is

later used by a separate sequential decoding algorithm to generate a codeword I
tree. 3

Parity checks are referred to by their position in the original ordering.

Each parity check is associated with a quantity called its e-value, defined to

be the number of new erasures involved in the parity check. The algorithm i
generates the new ordering by choosing parity checks one at a time. At each i
step, it chooses the remaining parity check with smallest e.value.

To minimize computation, the parity checks are grouped into "bins."

Each bin contains the labels of all the parity checks with a given e-value. To i
start, the algorithm places each parity check into the proper bin. Subse- -
quently, the new ordering is generated by choosing parity checks from the

first nonempty bin with smallest e.value. However, when a parity check is i

chosen, this may change the e-value of some remaining parity checks. This 3
happens because the definition of "new" erasures depends on which parity

I
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checks have already been chosen. As a result, the algorithm updates the bins

after each choice.

Each bin is organized as a two-way linked list, with pointers stored in the

arrays forward and backward. Note forward and backward store integers,

not memory address locations; see the Description of Variables below. The

array top stores the location of the most recent addition to each bin. If a bin

is not empty, new elements are placed at location top+1. This is done even if

there are earlier empty locations, to save search time. No bin is required to

use more than nj/k locations. This happens because nj/k is the total

number of parity checks, and no parity check can enter a bin more than once,

since a parity check's e-value can never increase.

A.2.2 Description of variables

backward[i][i2]
The first nonempty location preceding location i2 in bin i. If i2
is the first nonempty location, backward[i][i2] = -1.

bin[i][i2] This array holds the bins. The bin number is i, and the location
within the bin is i2.

e- value[i] The number of new erasures contained in parity check i.

exit A flag used to control program flow.

flag[i] An array of flags that indicate which digits are contained in the
parity checks chosen so far in the new ordering.

forward[i][i2]
The next nonempty location after location i2 in bin i. If i2 is
the last nonempty location, forward[i][i2] = -1.

i, i2, i3 Loop variables.

j A low-density code parameter. The code being used has param-
eters (n, j,k).

EL
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k A low-density code parameter. See j.
label Temporarily stores the contents of a bin location.

leveLmax The number of parity checks used to define the code.
leveLmax = n ilk.

location[i] The bin location of parity check i. Label i is stored at
bin [e&value [i ]][location [i ]]. 5

n The blocklength of the code.

new-top The new value of top for the current bin.

next The label of the next parity check in the new ordering.

old-top The old value of top for the current bin.

par[i][i2J This array stores a list of the parity checks that define the code, I
in the new ordering as determined by the algorithm. See unpar.

pclabel[i][i2]
The label of the i2-nd parity check containing digit i, where i2
starts at zero.

rword[i] This array stores the received word, obtained at the output of
the communication channel. When rword[i] = 2, this indicates
an erasure at digit i.

s, s2 Integer temporary variables.

sum [i An array of counters, used to generate pcjlabel.

top[i] The location of the last element added to bin i. top[i] = -1 if
bin i is empty.

unpar[i][i2j This array stores a list of the parity checks that define the code, 3
in the initial arbitrary ordering. unpar[i][i2] is the index of the
i2-nd digit involved in the i-th parity check. Parity checks are
numbered starting at one, not zero, to agree with the presenta-
tion in Section A.3. Digits are nurnbcred from zero to n-1. I

A.2.3 Storage requirements

All variables are integer valued. The arrays have the following sizes, where
1m = leveLmax+1 n j/k +'1.

backward [k +1][lm], bin[k +1][lm], e-value[Im], flag[n], forward[k + 1][lm],
location [lm], par[lm][k], pcjlabel[n ][j], rword[n ], sum[n ], top[k +11,
unpar [Im ][k ]

I
I
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A.2.4 The algorithm

Input n, , k, unpar, rword

Output par

Main Program

{ /* Begin */

Initialization;

for (i = 1; i <= leveLmax; i=i+l) {

/* Look for first nonempty bin. */
i2 = -1;
exit = 0;
while (exit =0) {

i2= i2+1;
if (top[i2] != -1)

exit 1;

/* Choose next parity check. "/
next = Pop(i2)"
for (i2 = 0; i2 "k;i2=i2+1)

par[i][i2 = unpar [next ][i2];

/* Update bins. */
for (i2 = 0; i2 < k; i2= i2+1){

s = unpar [next ][i2];
if (flag[s] 0- ) f

flag[s] = 1;
if (rword[s] == 2) {

for (i3 =0; i3 < j; i3= i3+1){

s2 = pc.label[s][i3];
if (s2 !- next) {
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Remove(evalue [s 2], location [s2]);
e-value[s2] = e.value [s2]-i;
location [s2] Push(s2, e..alue [s2]);

} /* End "

Initialization I
{ /* Begin */

s =n*j;
leveLmax = s/k; 3
/* Computing leveLmax in two steps insures that multiplication is

performed before division, so truncation errors will not result from
integer division. */ I

/* Initialize flag. */
for (i =0;i <n;i=i+l) 3

flag[i] = 0;

/* Generate pcilabel. *1 3
for (i =0; i < n; i=i+i)

sum[i] = -1;

for (i = 1; i <= leveLmax; i=i+1) {
for (i2 = 0; i2 < k; i2= i2+1){

s = unpar[i][i2];
sum [s ] = sum Is 1+ 1;
pc-label [s ][sum [si] = i;

}I

/* Initialize top. *1

for(i =0;i <= j;i=i+1)
top[i] = -1; 1

I
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/* Initialize bins. */

for (i = 1; i <= level-max; i= i+1) {
s =0;
for (i2 = 0; i2 < k; i2= i2+1)

if (rword[unpar[i][i2]] == 2)
S =s+1;

e-value [i] =s;
location[i] = Push(s,i);

} /* End*/

Push(s, i)

/* Place parity check s into bin i, and return its location. *1

{ /* Begin */

if (top[i] == -1) {

/* This bin is empty. */
bin[i][O] = s;
top[i = 0;
forward[i][O] = -1;
backward [i ][01 = -1;
return(0);

}
else {

/* This bin is not empty. */
old-top = top [i ];
new-top = old-top + 1;
bin [i][new-top ] = s;
top[i] = new-top;
forward [i ][old-top ] = new-top;
forward [i][new-top] = -1;
backward [i][new-top] = old-top;
return(new-top);

} /* End*/
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Pop (i2)

/* Remove the top element from bin i2, and return its contents. */

{ /* Begin */ I
if (top [i2] == -1)

return(-1);

else{ 

label = bin [i2][top[i2fl;
new-top = backward [i2][top [i2]]; 1
top[i2] = new-top;
if (new-top != -1)

forward [i2][new-top] = -1; I
return(label);

} /* End*/ 3

Remove(t, t2)3

/* Remove the element at location t2 in bin t.

{ /* Begin */

if (top[t] == t2) I
top[t] = backward [t][t2];

if (forward[t][t2] != -1) 3
backward [t][forward [t][t2]] = backward [t][t 2];

if (backward [t][t2] != -1) I
forward [t ][backward [t ][t2]] = forward [t][t2];

/* End*/

I
I
I
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A.3 A New Sequential Decoding Algorithm for Low-Density Codes

A.3.1 Preliminary remarks

Section 3.3 discusses the behavior of this algorithm, and Section A.1

contains some notes on the syntax of the description given below. The algo-

rithm is designed for the Binary Symmetric Channel, but it can be modified to

handle other binary input channels by changing the formula for the metric, m.

With respect to the simulation results of Section 3.2, forward and lateral

moves are defined as follows. A forward or lateral move occurs whenever the

"while" loop in function Kernel, presented below, is executed. When Kernel

is called, the first execution of the while loop is a forward move, and the

other executions are lateral moves. These moves are functionally similar to

forward and lateral moves performed by the Fano sequential decoding algo-

rithm [5]. In what follows, the word "level" refers to a level in the codeword

tree. The terms n-set and o-set are defined in Section 1.2.

A.3.2 Description of variables

a[i][i2] This array contains a list of all binary vectors of length k-1.
a[i][i2] is digit i2 of vector i.

active In Backtrack mode, the index of the active parent; that is,
parent[active] is the parent being changed. Before any parent is
chosen, active = -1.

b The current branch number, used in Kernel.

b-flag[i][i2] A flag set to 1 if branch [parent[i]] is set to i2 and thr resulting
change is followed through up to bt-level.
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best, best2 Stores the best change discovered in Backtrack mode. This
change is obtained by setting branch[parent[best]] = best2.

beta An intermediate quantity used to calculate metric values.
branch [1] The branch number at level I chosen by the decoder.
branch-best The branch number with metric value met-best.

branch-max[l]
The maximum branch number at level 1. Branches are num-
bered starting at zero, so branchmax[l] is one less than the
number of outgoing branches leaving a node at level 1-1.

bt-level The level in the codeword tree from which Backtrack mode is
entered.

crossref[i] The level where digit i is assigned; in other words, the level
where digit i occurs in the n-set.

d[l] The size of the n-set at level I.

digit[i] In Backtrack mode, digit[i] stores the value of the digit in the o-
set at bt-level that is assigned at parent[i].

exit, exit2, exit3
Flags used to control program flow.

flag[i] An array of flags used to generate new, old, and crossref.
hold[i][i2] An array that holds all possible values of m, neglecting the local

rate term. For a given digit t, let i = v[t]. Then hold[i][O] is
used if x[t] = rword[t], and hold[i][1] is used if x[t] * rword[t].

i, i2 Loop variables.

j One of the parameters of the low-density code being used. The
code is an (n,j,k) low-density code.

k Another low-density code parameter. See j. 3
I The current level in the codeword tree. The root node is at level

zero, and the final level is leveLmax. 3
levelmax The final level in the codeword tree. leveLmax = njlk.

m[i][i2] Metric contribution for digit i when x[i] = i2.
metbc Stores the metric value of the best change discovered in Back-

track mode.
met.best The greatest branch metric encountered in the current run of "

Kernel.
meLcomp When entering Backtrack mode, stores met-total[bt-level].

Future changes are compared to this quantity.

meLtotal[l] Total path metric at level I. met-total[l] equals the sum of
metric [i], from i = 1 to I.

U
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met.val[i][i2]
The value of met-total [bt-level that results after
branch[parent[i]] is set to i2.

metric[l] Branch metric at level 1.
mode Indicates the operating mode of the decoder. 0 = Forward

mode, 1 = Backtrack mode, 2 = Reset mode.
n The blocklength of the code.

n.parents In Backtrack mode, the total number of parents of btilevel.
new[l][i] The i-th digit in the n-set at level 1.
old[l][i] The i-th digit in the o-set at level I.

old-branch [i ]
Stores branch [parent[il.

old-parity [i] Stores parity [parent [i]].
old-set[i] Stores set [parent [i ]][parity [parent [i]]].

p The crossover probability of the channel.
p_flag[i] A flag set to 1 if any branch setting is changed at parent[i].
par[l][i] This array stores an ordered list of the parity checks- that define

the code. par[1][i] is the index of the i-th digit involved in the I-
th parity check. Digits are numbered from 0 to n-1. The first
parity check has index one, not zero, in order to agree with the
numbering of the codeword tree levels.

parent[i] In Backtrack mode, this array stores the locations of the parents
of bt-level.

parity [1] The parity of the o-set at level 1. 0 = even, 1 = odd.
r[iI The local code rate of the codeword tree. r[i] is the local rate at

the level which contains digit i in its n-set.
rword [i] This array stores the received word, obtained at the output of

the communication channel. rword is a binary vector.
s, s2, s3 Integer temporary variables.

set[i][i2] If set[i][i2] 0 -1, this indicates a decision by the decoder to
assign branch [i] = set[iI[i2] when parity [i] = i2.

status Records the output status of the decoder. 0 = Decoding com-
pleted, 1 = Decoding failure declared, 2 = Execution halted
because steps > step-max.

steps The number of forward and lateral moves performed by the
decoder.

step-max The maximum number of forward and lateral moves the decoder
is allowed to perform.
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stop A flag set to 1 when the decoder is done.

sx Floating point temporary variable.

v[i] For rword, the number of violated parity checks involving digit i.

x[i] The i-th digit of the codeword hypothesized by the decoder.

A.3.3 Storage requirements

Note: n, j,k are low-density code parameters I
k2 = k - i

Im = leveLmax+1 = nj/k + l

int a [k2][k-1], active, b, bflag[k][k2], best, best2, branch[lm],
branch-best, branchmax[imI, bt-level, cross-ref[n], d[lm], digit[k], 3
exit, exit2, exit3, flag[n], i, i2, j, k, leveLmax, mode, n, n.parents,
new [im ][k], old [im ][k], old.branch [k], oldparity [k], old-set [k ],
p.flag[k], par[lm][k], parent[k], parity[lm], rword[n], s, s2, s3,I
set [lm][2], status, steps, step-max, stop, v[n], x[n];

float beta, hold[j+1][21, m [n ][2], meLbc, meLbest, met comp, I
mettotal [Im ], met.val [k ][k 2], metric [Im], p, r [n ], sx;

Note: m, met.bc, meLbest, met.comp, met.total, met.val, and metric must
be able to store a value of -0. This can be implemented using a correspond-
ing set of one bit flags.

A.3.4 The algorithm I

Input n; j; k; par; p; rword; step-max 3
Output x; status; steps

Main program I

Initialization; 3
stop = 0;
while (stop ==) {

if (mode == 0) {

/* Forward mode. */ I
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while (1 <= level-max and mode ==) {
Kernel;
if (metric [1] >= 0)

else
mode = 1;

,if (mpde == 0) { /* I > level-max */
status = 0;
stop = 1,

}

I else if (mode == 1) {

3 /* Backtrack mode. */

Initialize backtrack;
while (any untried parents left) {

Choose next parent;
set [parent [active ]][old.parity [active]] -1;
p_.flag[active] = 1;

I while (there are any untried settings of active parent) {

Choose next setting;
if (parent[active] < 1)

1 = parent [active];

exit = 0;
while ( <= bt-level and exit == 0) {

Kernel;
if (I == parent[active])

Digit test;I I = 1+1;
}

if (exit == 0) {
s = branch [parent [active 11;
metval [active ][s ] = met-total [bt-level 1;
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b-flag [active ][s ] = 1;
}

I = parent [active];

/* The statement above has an unexpected but useful effect. If a new parent
is chosen, and the new parent level > the old parent level, then the decoder
will first go to the old parent level. This allows the last change at the old
parent level to be reset as the decoder moves forward to implement the first
change at the new parent level. */

}

/* Return setting of active parent to previous value. */

set [parent [active ]][oldpari y [active]] = old-set [active];

}

Decision;
mode = 2;}

else if (mode == 2) {

/* Reset mode. */

if (active != -1) {

if (metbc > metcomp) {

/* This implements the best change discovered in Backtrack mode. */

set [parent [best ]][oldparity [best]] = best 2;
I =parent[best];

}
else {

/* In this case, no change is accepted, and the decoder must reset j
the last change. *I I!

.... .... .......... ............ ...I
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3 l = parent[active ];

while (I <= bt-level) {
Kernel;

mode 0;

I }

Initialization

s = n*j;
leveLmax = s/k;

/* Calculating leveLmax in two steps insures that integer division3 will not cause truncation error.

steps = 0;
met-total[O] = 0;
mode = 0;
1 = 1;
for (i = 1; i <= leveLmax; i = i+1) {

set[i][O] = -1;
set[i][1] = -1;

/* Calculate new, cross-ref, old, d, branch-max. *1
for(i=0;i <n;i =i+1){

flag[i] = 0;

for (i = 1; i <= leveLmax; i = i+1) {
s = 0;
s2 = 0;
for (i2 = 0; i2 < k; i2 = i2+1) {

s3 =par[i][i2];
if (flag [s3] == 0) {

s =s+l;

I
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new[i][s] = s3;
cross.re f[s31 = i;
flag(]s3= 1;

}I
else {

s2 = s2+1;
old[i][s2] =s3;

}g

d[iJ =s;
if (s <= 1)

branch-max[i] = 0;
else1

branch-max [i] - 2s - '-1;

/* Calculate v.
for (i = 0; i < n; i =i+1)

v[i] = 0;
for (i = 1; i <= leveLmax; i = i+1) {

if (rword does not satisfy parity check i) { I
for (i2 = 0; i2 < k; i2 = i2+1) {

s =par[i][i2];
v[s] = v[s] + 1; 3

} '

/* Calculate metric. */
sx = (1 -2p)k-1;
beta = (1-sx)/(1+sx);
for (i =0; i <= j; i = i+1){ 3

sx = p * betaj-2i /(1-p);

/* With respect to the notation of Section 3.1, m
P(y,= x, I Vt= i) = 1/(l+sx),
P(Y=AxtlV,=i) =sx/(l+sx). *1 3

hold[i][01 = 1 - log(l+sx)log(2.);
hold[iI[1I = 1 + log(sx/(1+sx))/log(2.); 3

} I
I



127

s = 0;
for (i = 1; i <= leveL.max; i = i+1) {

if (d[i] == 0) {
S = s+l;

else {

sx = d[i] - s - 1;
sx = sx/d[i ];

/* Calculating sx in two steps insures the division
is performed floating point, not integer. */

s =0;
for (i2 = 0; i2 < d[i]; i2 = i2+1) {

s2 = new[i][i2];
r[s2J = sx;

if (rword[s2] == 0) {
m[s2][0] = hold[v[s2fl[O] - r[s2];
m[s2][1] = hold[v[s2]][1] - r[s2J;

else {
m(s2][0] = hold[v[s2]](1] - r[s2];
m(s2][1] = hold[v[s2l][0] - r[s2];

return;

Kernel

/* Kernel determines branch[l], and updates x, metric[l],
and met-total(l] accordingly. */

exit2 = 0;
exit3 = 0;

/* Control returns to the main program when exit2 is set to 1.
Setting exit3 = 1 causes the while loop to be executed exactly
one more time. */
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/* Calculate parity [I]. */
s =0;
for (i =0; i < k-dil ]; i i+1){

if (old[l][i] = 1)
s = 1-s;

}
parity [I] = s;

/* Determine initial branch number. */

if (set [I][parity [l]] ==-1)
b =0;

else {
b = set[l][parity [/1];
exit 3 = 1;

I

while (exit2 == 0) {
steps = steps +1;
if (steps > step-max) {

status = 2;
stop = 1;
return;

if (d[1] == 0) {
if (parity[11 == 0)

metric [l] = 0;
else

metric[l] = -0;
exit2 = 1;

}
else{

/* Generate branch. */
for (i = 0; i < d[I]-1; i i+1) {

s = new[1J[iJ;
x[s] = a[b [il;

Assign x[s] for s = new[I][d[l]] so that
parity check I is satisfied;

/* Determine metric value. */ i
metric [I] = 0;
for (i = 0; i < d[l]; i= i+1){ I

I!
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s =new[l][i];
metric [I] metric [I ] + rn[s I[x [s]];

/* Record best branch so far. */

if (b == 0 or metric[l] > metbest) {
metbest = metric [l];
branch-best = b;}

/* Decide whether to exit, and determine next branch number. */
if (metric[l] >= 0 or exit3 == 1)

exit2 = 1;
else if (b == branch.max[1]) {

exit 3 = 1;
b = branch-best;

}* else

} /* End while loop. *1

3 branch [l] =b ;
met-total[l] = met.total [I-i] + metric[l ];
return;
If

3 Initialize backtrack

bt-level = 1;3 n..parents = k - d [btlevel];
metcomp = met-total [I];
active = -1;
for (i =0; i <nparents; =i+1)

s = old [bt-level][i];
parent[i] = cross-re f[s ];
old-parity [i ] = parity [parent [i fl;
old-branch [i ] = branch [parent [i fl;
old-set [i ] = set [parent [i l[old-panity [i]];I digit[i] = x[s];
p-.flag[i] =0;
for (i2 = 0-: i2 <= branch-max [parent [i]]; i2 --i2+1)

b_ flag[i][i2] = 0;
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return; 3

Choose next parent I
exit -- 0;
while (active < n-parents and exit == 0) {

active = active +1;
if (d [parent [active]] > 1)

exit = 1;I

/* If d [parent [active ]] <= 1, then branch-max [parent [active]] = 0,
and so there are no new settings to try. Therefore, a parent is
chosen only if d[parent[active]] > 1. *1

return;

Choose next setting I
/* Chooses the next setting of parent[active]. */ 3
s =set [parent [active ]][old-parity [active]];

/* The following statement causes the decoder to skip the original setting. */

if (s == old-branch [active]) 3
s = s+1;

set [parent [active ]][oldparity [active ]] = s +1; I
/* The condition in the second while loop in the main program insures that

s+1 < branch-max[parent[active]]. *1

return; 3
I
I
I
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Digit test

/* If the value of the digit with index given by old [bt-level][active]
is not changed, then the current change at parent[active] will probably
not raise the value of met-total[bt-level]. For this reason, the current
change is aborted and the next change is tried. */

if (x [old [bt-level ][active ]] == digit [active ])
exit = 1;

return;

Decision

/* Determines the best change and decides whether to declare
a decoding failure. */

metbc = -oo;
for (i =0; i < n..parents; i=i+1) {

if (p-flag[i] == 1) {I for (i2 = 0; i2 < branch-max [parent [il; i2 = i2+1) {
if (b.flag[i][i2J == 1 and meLvaliJ[ff2j > meLbc) {

best = i;
best2 = i2;
met.bc - met-val[i][i2];

}

if (met.comp -= -cc and meLbc -= -oc) {
/* Decoding failure. */3 status -1
stop = 1;

}*return;

1
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